K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Hệ đã cho tương đương với : 

\(\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)

Nhân các phương trình theo vế : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=24^2\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=24\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-24\end{cases}}\)

Từ đây thay vào từng phương trinh trên để tìm x,y,z , rồi từ đó suy ra P

7 tháng 1 2017

Cộng 1 vào 2 vế của 3 pt ta được: 
x+xy+y+1=1+1 <=> (x+1)(y+1)=2 
y+yz+z+1=3+1 <=> (y+1)(z+1)=4 
z+xz+z+1=7+1 <=> (z+1)(x+1)=8 
Ta có: (x+1)(y+1)(y+1)(z+1)=(y+1)2 .8=2.4=8 => (y+1)2 =1 

(y+1)(z+1)(z+1)(x+1)=(z+1)2 .2=4.8=32 => (z+1)2 =16 

(z+1)(x+1)(x+1)(y+1)=(x+1)2 .4=2.8=16 => (x+1)2 =4 
Do x;y;z không âm nên x= 1; y= 0; z= 3 
=> M = 1 +02 +32 =10

16 tháng 8 2018

ket qua =10

16 tháng 1 2020

Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

10 tháng 8 2019

Không mất tính tổng quát.

g/s : \(x\ge y\ge z\)\(\ge1\)

Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)

=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)

=> tồn tại số nguyên dương k sao cho:  \(xy+yz+zx+1=k.xyz\)

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)

=> \(k\le1+1+1+1=4\)(1)

TH1: k = 4  khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 (  tm)

TH2: k=3

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)

=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)

=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)

=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1

Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)

Vậy x=2, y=z=1 ( thử vào thỏa mãn)

TH3: k=2

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)

=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)

=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1

Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)

Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)

Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)

TH4: K=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)

=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3

Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại

Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại

Với z =3   => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)

=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)

TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)

Vậy: (x; y; z)  là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng

Ps: Cầu một cách ngắn gọn hơn! Thanks

23 tháng 9 2018

\(P=\frac{1}{xy-xyz-z}+\frac{1}{yz-xyz-x}+\frac{1}{xz-xzy-y}\)  .Do xyz=-z =>-xyz=1 và x+y+z=0 . Thế vào P ta được \(P=\frac{1}{xy+1+x+y}+\frac{1}{yz+1+y+z}+\frac{1}{xz+1+x+z}\)\(P=\frac{1}{\left(x+1\right)\left(y+1\right)}+\frac{1}{\left(y+1\right)\left(z+1\right)}+\frac{1}{\left(x+1\right)\left(z+1\right)}\) =\(\frac{z+1+x+1+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\) 

\(P=\frac{3}{xyz+z+xz+yz+xy+1+x+y}\) =\(\frac{3}{xy+yz+xz}\) (Do x+y+z=0; xyz=-1)

x+y+z=0 => (x+y+z)2=0 => x2+y2+z+2(xy+yz+xz)=0 => 2(xy+yz+xz)=-6 => xy+yz+xz=-3 Thế vào P ta được :

\(P=\frac{3}{-3}=-1\) . Chúc bạn học tốt

21 tháng 9 2018

Hình như bạn ghi thiếu đề r . Còn xyz=-1 nữa 

3 tháng 3 2020

Hệ đẳng cấp. Xét 2 TH: x = 0 và x khác 0.

+) Th1: x = 0 ---> không thỏa mãn

+) Th2: x khác 0 

Đặt: y = ax; z = bx ( a; b > 0)

ta có hệ mới:

\(\hept{\begin{cases}x^2\left(a^2+b^2\right)=50\\x^2\left(1+a+\frac{a^2}{2}\right)=169\\x^2\left(1+b+\frac{b^2}{2}\right)=144\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{a^2+b^2}{1+a+\frac{a^2}{2}}=\frac{50}{169}\\\frac{1+a+\frac{a^2}{2}}{1+b+\frac{b^2}{2}}=\frac{169}{144}\end{cases}}\) <=> \(\hept{\begin{cases}144a^2-50a-50+169b^2=0\\144a^2+288a-50-169b^2-338b=0\end{cases}}\)

Lấy vế dưới trừ vế trên ta có:

\(338a-338b^2-338b=0\) <=> \(a=b^2+b\)  Thế vào 1 trong 2 phương trình ta có:

\(144\left(b^2+b\right)^2-50\left(b^2+b\right)-50+169b^2=0\)

<=> \(144b^4+288b^3+263b^2-50b-50=0\)

<=> \(\left(144b^4-25b^2\right)+\left(288b^3-50b\right)+\left(288b-50\right)=0\)

<=> \(\left(144b^2-25\right)\left(b^2+2b+2\right)=0\)

<=> \(144b^2-25=0\)

<=> \(b=\pm\frac{5}{12}\)

+) Với \(b=\frac{5}{12}\)ta có: \(a=\frac{85}{144}\)

Do đó:  \(x^2\left[\left(\frac{5}{12}\right)^2+\left(\frac{85}{144}\right)^2\right]=50\)

<=> \(x^2=\frac{41472}{433}\)

=> \(K=xy+yz+zx=ax^2+bx^2+abx^2=x^2\left(a+b+ab\right)\) Em thay vào tính

+) Tương tự với b = -5/12