Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
Theo đề bài ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )
Theo tính chất dãy tỉ số bằng nhau ta có :
\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( 2 )
Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )
Từ ( 2 ) , ( 3 )
= > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)
a) Từ (*)suy ra:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)\(=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (đpcm)
b) Tương tự câu a nhé bạn!
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) chứng minh \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{a}{b}\right)^3=\dfrac{a^3}{b^3}\left(1\right)\)
mà cần chứng minh: \(\left(\dfrac{a+b+c}{b+c+d}\right)=\dfrac{a}{d}\left(2\right)\)
từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(\dfrac{a^3}{b^3}=\dfrac{a}{d}\Rightarrow a^3.d=b^3.a\)
\(\Rightarrow a^2.d=b^3\)
vì \(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow a.c=b^2\)
\(\Rightarrow a.b.c=b.c\left(3\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow a.d=b.c\left(4\right)\)
từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow a.a.d=b^3\)
\(\Rightarrow a^2.d=b^3\left(đpcm\right)\)
vậy \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có: \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\left(1\right)\)
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{bk-b}{dk-d}=\dfrac{b\left(k-1\right)}{d\left(k-1\right)}=\dfrac{b}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow k=\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\) ( tính chất dãy tỉ số bằng nhau )
\(\Rightarrow k^2=\left(\dfrac{a-c}{b-d}\right)^2=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\) (1)
và \(k^2=\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{ac}{bd}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Vậy...
Đề sai rồi bạn ạ
Phải là : Cho\(\dfrac{a}{b}=\dfrac{c}{d}\) với c≠±1. Chứng minh rằng \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ac}{bd}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)Suy ra: \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=\dfrac{\left[k\left(b-d\right)\right]^2}{\left(b-d\right)^2}\)=k2 (1)
\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{k^2.bd}{bd}=k^2\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{ac}{bd}\)
vì vai trò của a,b,c,d như nhau, giả sử \(a\ge b\ge c\ge d\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{\left|a-b\right|}{2}=\dfrac{\left|b-c\right|}{23}=\dfrac{\left|c-d\right|}{32}=\dfrac{\left|d-a\right|}{223}\)
=\(\dfrac{a-b+b-c+c-d-\left(-d+a\right)}{-166}=0\)
\(\Rightarrow a+b=0\Rightarrow a=b\) (1)
\(b-c=0\Rightarrow b=c\) (2)
\(c-d=0\Rightarrow c=d\) (3)
từ (1),(2) và (3) suy ra: a=b=c=d