Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dtsbn:
\(\dfrac{1}{a+b}=\dfrac{2}{b+c}=\dfrac{3}{c+a}=\dfrac{1+2+3}{2\left(a+b+c\right)}=\dfrac{6}{2\left(a+b+c\right)}=\dfrac{3}{a+b+c}\)
\(\Rightarrow\left\{{}\begin{matrix}3a+3b=a+b+c\\3b+3c=2a+2b+2c\\3a+3c=3a+3b+3c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c=2a\\b=0\end{matrix}\right.\)
\(Q=\dfrac{a+2021b+c}{a+2022b+c}=\dfrac{a+2a}{a+2a}=1\)
Ta có: aba+b=bcb+c=aca+c⇒a+bab=b+cbc=a+cacaba+b=bcb+c=aca+c⇒a+bab=b+cbc=a+cac
⇒aab+bab=bbc+cbc=aac+cac⇒aab+bab=bbc+cbc=aac+cac
⇒1b+1a=1c+1b=1c+1a⇒1b+1a=1c+1b=1c+1a
⇒1a=1b=1c⇒a=b=c⇒1a=1b=1c⇒a=b=c
⇒M=ab+bc+caa2+b2+c2= a2+b2+c2a2+b2+c2=1
Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) suy ra \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
https://olm.vn/hoi-dap/detail/221248297106.html
tham khảo nhé
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{3+2+1}{a+b+b+c+c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)
\(\rightarrow a+b=a+b+c\) \(\rightarrow c=0\)
\(\Rightarrow P=\frac{3a+3b+2019c}{a+b-2020c}=\frac{3\left(a+b\right)+2019\cdot0}{a+b-2020\cdot0}=\frac{3\left(a+b\right)}{a+b}=3\)
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath
Câu Hỏi Tương Tự của Trương Diệu Ngọc nha !
MERRY CHRISMAS !Đoàn Văn Nam
\(\frac{1}{a+b}=\frac{2}{b+c}=\frac{3}{c+a}=\frac{1+2+3}{2\left(a+b+c\right)}=\frac{3}{a+b+c}.\)
\(\Rightarrow\frac{3}{c+a}=\frac{3}{a+b+c}\Rightarrow c+a=a+b+c\Rightarrow b=0\)
\(\Rightarrow Q=\frac{a+2021b+c}{a+2022b+c}=\frac{a+c}{a+c}=1\)