K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 7 2019

Lời giải:
ĐKĐB tương đương với \(\left\{\begin{matrix} a^4=12c-2015\\ b^4=12a-2015\\ c^4=12b-2015\end{matrix}\right.(*)\)

\(\Rightarrow \left\{\begin{matrix} a^4-b^4=12(c-a)\\ b^4-c^4=12(a-b)\\ c^4-a^4=12(b-c)\end{matrix}\right.\)

Nhân theo vế:
\((a^4-b^4)(b^4-c^4)(c^4-a^4)=12^3(a-b)(b-c)(c-a)\)

\(\Leftrightarrow (a-b)(a+b)(a^2+b^2)(b-c)(b+c)(b^2+c^2)(c-a)(c+a)(c^2+a^2)=12^3(a-b)(b-c)(c-a)\)

\(\Leftrightarrow (a-b)(b-c)(c-a)[\prod (a+b)\prod (a^2+b^2)-12^3]=0\)

TH1 :Nếu $a=b$ \(\Rightarrow 12(c-a)=a^4-b^4=0\Rightarrow c=a\)

\(\Rightarrow a=b=c\)

Khi đó:

\(P=\frac{670a+b+c}{a}+\frac{670b+c+a}{b}+\frac{670c+a+b}{c}=\frac{670a+a+a}{a}+\frac{670a+a+a}{a}+\frac{670a+a+a}{a}\)

\(=672+672+672=2016\)

Tương tự $b=c,c=a$ ta cũng thu được như trên

TH2: Nếu \(\prod (a+b)\prod (a^2+b^2)-12^3=0\)

Từ $(*)$ ta suy ra \(\left\{\begin{matrix} 12c-2015\geq 0\\ 12a-2015\geq 0\\ 12b-2015\geq 0\end{matrix}\right.\Rightarrow a,b,c\geq \frac{2015}{12}\)

Do đó: \(\prod (a+b)\prod (a^2+b^2)\geq (\frac{2015}{6})^3(\frac{2.2015^2}{12^2})^3>12^3\)

\(\Rightarrow \prod (a+b)\prod (a^2+b^2)-12^3>0\) nên TH này loại.

Vậy.........

AH
Akai Haruma
Giáo viên
1 tháng 7 2019

Bạn tham khảo tại link sau:

Câu hỏi của Nguyễn Thiện Minh - Toán lớp 8 | Học trực tuyến

15 tháng 1 2021

hoc24.vn

Khác số chút thoyy.

15 tháng 1 2021

Cảm ơn bạn nhiều !

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài