K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

A B C D M N E F I
 

Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp

tương tự có đpcm

b, ta có: 

MFN=DAB=90

NEM=BCD=90

=> nội tiếp

c, theo câu b ta có: 

MNB=BEC=BNC nên: NB là phân giác góc INC

thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN 

do đó áp dụng tính chất đường phân giác ta được BI=BC=a.

24 tháng 2 2021

Chứng minh góc EBN = góc ECN = 450

=> Tứ giác BENC nội tiếp (đpcm)

 

2 tháng 1 2018

J A B C O E D H K M N

a) Xét hai tam giác ABD và ACE có:

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}=90^o\)

\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)

b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.

c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.

Khi đó \(\widehat{AKN}=\widehat{AMN}\)  (Hai góc nội tiếp cùng chắn cung AN)

Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)

Suy ra \(\widehat{AKN}=\widehat{ANM}\)

d) Gọi J là giao điểm của MN với AO.

Xét tam giác vuông ANO, đường cao NJ, ta có:

\(AJ.AO=AN^2\)  (Hệ thức lượng)

Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)

\(\Rightarrow AJ.AO=AH.AK\)

\(\Rightarrow AN^2=AH.AK\)

\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)

Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.

3 tháng 12 2019

Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng  (g g) thì sao được ??

9 tháng 6 2019

A B C O M N E K T

a) Có ^AOB = 1800 - ^OAB - ^OBA = 1800 - ^BAC/2 - ^ABC/2 = 900 + (1800 - ^BAC - ^ABC)/2 = 900 + ^ACB/2

b) Dễ thấy A,M,O,E cùng thuộc đường tròn đường kính OA (Vì ^AMO = ^AEO = 900) (1)

Ta có ^AOK = 1800 - ^AOB = 1800 - (900 + ^ABC/2) = 900 - ^ACB/2 = ^CEN (Do \(\Delta\)CEN cân tại C)

=> Tứ giác AOKE nội tiếp hay A,O,K,E cùng thuộc một đường tròn (2)

Từ (1) và (2) suy ra năm điểm A,M,K,O,E cùng thuộc một đường tròn (đpcm).

c) Ta thấy A,O,K,E cùng thuộc một đường tròn (cmt) và OK cắt AE tại T

Nên \(\frac{KT}{ET}=\frac{AT}{OT}\)(Hệ thức lượng đường tròn). Kết hợp \(\frac{AT}{OT}=\frac{AB}{OB}\)(AO là phân giác ^BAT)

Suy ra \(\frac{KT}{ET}=\frac{AB}{OB}\). Mặt khác: ^BKN = ^OAE = ^BAO và ^NBK = ^OBA => \(\Delta\)BKN ~ \(\Delta\)BAO (g.g)

=> \(\frac{AB}{OB}=\frac{KB}{NB}\). Từ đây \(\frac{KT}{ET}=\frac{KB}{BN}\)=> KT.BN = KB.ET (đpcm).

29 tháng 7 2016

Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )

1) Do BN = 1/4 BC  =>  SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB  =>  MB = 3/4 AB  =>  SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC

2) Do AM = 1/4 AB  =>  SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA  =>  PA = 3/4 CA  =>  SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC

3) Do CP = 1/4 CA  =>  SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC  =>  NC = 3/4 BC  =>  SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC

Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC

29 tháng 7 2016

bạn có thể giúp mình tất cả các bài còn lại đc ko

1 tháng 5 2016

Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I