Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).
TH1: \(h=0\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.
\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.
TH2: \(h=5\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.
\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.
Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.
Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.
Ta có nên d ∈ {2;4;6;8}
·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.
· Với d=2
1. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn.
2. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn
3. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
4. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.
· Tương tự với d=6; d=8
Vậy có tất cả 42+3.24=114 số thỏa mãn.
Chọn B.
Ta có .
Với d=4 thì c=5 , chọn a có 7 cách, chọn b có 7 cách nên có 7.7 = 49 số thỏa mãn.
Với d=2:
+) Dạng chọn c có 6 cách nên có 6 số thỏa mãn.
+) Dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Đổi chỗ 4 và 5 thì có số thỏa mãn.
Tương tự với d=6; d=8 nên có tất cả 42 + 3.24 = 114 số thỏa mãn
Chọn B.
Chữ số cuối cùng bằng 0, các khả năng với 2 chữ số là
(1;2); (1;8); (4;5); (1;5); (2;4); (4;8).
Chữ số cuối cùng bằng 5, các khả năng xảy ra với 2 chữ số là
(1;0);(4;0);(1;3); (2;8);(3;4).
Hoán vị các bộ 2 chữ số không tồn tại số 0, như vậy có 6.2 + 2 + 3.2 = 20 số.
Chọn B.
Chữ số cuối cùng bằng 0, các khả năng với 2 chữ số hàng trăm và hàng chục là (1;2); (1;8); (4;5); (1;5); (2;4); (4;8).
Chữ số cuối cùng bằng 5, các khả năng xảy ra với 2 chữ số hàng trăm và hàng chục là (1;0);(4;0);(1;3);(2;8);(3;4).
Hoán vị các bộ 2 chữ số không tồn tại số 0, như vậy có 6.2+2+3.2=20 số.
Chọn B.
Giả sử số đó là
Trường hợp 1: c=0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2 c=5 . Với a=2 chọn b có 6 cách nên có 6 số thỏa mãn.
Với a khác 2 chọn a có 5 cách chọn, và tất nhiên b=2 nên có 5 số thỏa mãn.
Do đó có 12+6+5=23 số thỏa mãn.
Chọn D.
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
Gọi số cần tìm có dạng . Vì chia hết cho 5 suy ra e =0 hoặc 5.
TH1. Với e=0
Nếu a=1; thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn d.
Theo quy tắc nhân có 1.5.4.3=60 số.
Tương tự nếu b=1; c=1 hoặc d=1 ta cũng có 60 số.
Trong trường hợp 1 có tất cả 60.4=240 số cần tìm.
TH2. Với e=5,
Nếu a=1 thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn c. Theo quy tắc nhân có 1.5.4.3=60 số.
Nếu b= 1 thì có 4 cách chon a( a khác 0); 4 cách chọn c và 3 cách chọn d suy ra có 1.4.4.3=48 số
Tương tự với c=1 hoặc d=1 cũng có 48 số
Trong trường hợp 2 có 60+3.48= 204.
Vậy có tất cả 204+240= 444 số cần tìm.
Chọn A.