Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đề là chứng minh \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\) à bạn?
Ta có: \(\dfrac{a}{c}=\dfrac{c}{b}\)
\(\Rightarrow ab=c^2\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\)
\(\Rightarrowđpcm\)
b)
Ta có: \(\dfrac{a}{c}=\dfrac{c}{d}\)
\(\Rightarrow c^2=ab\)
\(\Rightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b^2-a^2}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)
\(\Rightarrowđpcm.\)
a,Từ \(\dfrac{a}{c}=\dfrac{c}{b}\)⇒\(c^2=a.b\)
Khi đó \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+a.b}{b^2+a.b}\\ =\dfrac{a\left(a+b\right)}{b\left(a+b\right)}\)
b,Ta có:
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\Rightarrow\dfrac{b^2+c^2}{a^2+c^2}=\dfrac{a}{b}\\ \dfrac{a^2+c^2}{b^2+c^2}=\dfrac{b}{a}\Rightarrow\dfrac{b^2+c^2}{a^2+c^2}-1=\dfrac{b}{a}-1\\ hay\dfrac{b^2+c^2-a^2-c^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
có làm thì mới có ăn ko làm mà đòi có ăn thì ăn đồng bằng ăn cát
a/ \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
\(Tacó\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(b+a\right)}=\dfrac{a}{b}\) (vì \(c^2=ab\) )
Vậy....