Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1+4+4^2+4^3+4^4+....+4^{20}\)
\(C=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{18}+4^{19}+4^{20}\right)\)
\(C=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{18}\left(1+4+4^2\right)\)
\(C=\left(1+4+4^2\right)\left(1+4^3+...+4^{18}\right)\)
\(C=21.\left(1+4^3+...+4^{18}\right)\)
Vì 21 chia hết cho 21 nên \(21.\left(1+4^3+...+4^{18}\right)\) chia hết cho 21(đpcm)
Chúc bạn học tốt!!!
\(C=1+4+4^1+4^2+4^3+4^4+...+4^{20}\)
\(C=\left(1+4+4^2\right)+\left(4^2+4^3+4^4\right)+...+\left(4^{18}+4^{19}+4^{20}\right)\) \(C=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{18}.\left(1+4+4^2\right)\)
\(C=\left(1+4+4^2\right).\left(1+4^3+...+4^{18}\right)\)
\(C=21.\left(1+4^3+...+4^{18}\right)\)
Vì \(21⋮21\) \(\Rightarrow21.\left(1+4^3+...+4^{18}\right)\)
Vậy \(C⋮21\)
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
\(B=\left(1+4+4^2\right)+...+\left(4^{66}+4^{67}+4^{68}\right)=21.1+...+21.4^{66}\)
\(B=21.\left(1+...+4^{66}\right)\)
Vậy tổng chia hết cho 21
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=1.21+4^3.21+...+4^57.21
A=(1+4^3+...+4^57).21
Vậy A chia hết cho 21
Ta có : B=1+4+4^2+4^3+...+4^2012
=>4B=4(1+4+4^2+4^3+...+4^2012)=4+4^2+4^3+4^4+...+4^2013
=>4B-B=(4+4^2+4^3+4^4+...+4^2013)-(1+4+4^2+4^3+...+4^2012)
=>3B=4^2013-1
Ta có 4^2013=(4^3)^671
Mà 4^3=64 chia cho 21 dư 1
=>(4^3)^671 chia cho 21 dư 1
=>(4^3)^671 -1 chia hết cho 21
Hay 4^2013-1 chia hết cho 21
=>3B chia hết cho 21
Mặt khác lại có:4^2013-1 > 63
=> 3B>3 nhân với 21
B>21(1)
Mà 3B chia hết cho 21(2)
Từ (1) và (2)=>B chia hết cho 21
Vậy ........................................
k cho mình nha
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
C=1+4+4^2+4^3+...+4^20
C=(1+4^1+4^2)+(4^3+4^4+4^5)+...+(4^18+4^19+4^20)
C=1(1+4+16)+4^3(1+4+16)+...+4^18(1+4+16)
C=1x21+4^3x21+...+4^18x21
C=21x(1+4^3+...+4^18)
Suy ra C chia hết cho 21
cho c=1+4+4^1+4^2+4^3+4^4+...+4^20
chứng minh rằng c chia hết cho 21
Được cập nhật {timing(2017-08-22 17:07:28)}
Toán lớp 6
Hỏa Long Natsu 2005 10 giây trước (17:16)
Thống kê hỏi đáp
Báo cáo sai phạm
C=1+4+4^2+4^3+...+4^20
C=(1+4^1+4^2)+(4^3+4^4+4^5)+...+(4^18+4^19+4^20)
C=1(1+4+16)+4^3(1+4+16)+...+4^18(1+4+16)
C=1x21+4^3x21+...+4^18x21
C=21x(1+4^3+...+4^18)
<=> C\(⋮\) 21
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 60 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng