Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)
mình đánh nhầm, giúp vs ạ
\(\Leftrightarrow\sqrt{-x^2-2x+15}\le x^2+2x+m\)
\(\Leftrightarrow-x^2-2x+15+\sqrt{-x^2-2x+15}-15\le m\)
Đặt \(t=-x^2-2x+15\Rightarrow0\le t\le4\)
\(\Rightarrow t^2+t-15\le m\) với \(t\in\left[0;4\right]\)
\(\Leftrightarrow m\ge\max\limits_{\left[0;4\right]}\left(t^2+t-15\right)\)
Xét \(f\left(t\right)=t^2+t-15\) trên [0;4]
\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)
\(\Rightarrow f\left(t\right)\le5\Rightarrow m\ge5\)
\(\Leftrightarrow-x^2+2x+3+4\sqrt{-x^2+2x+3}\le m\)
Đặt \(\sqrt{-x^2+2x+3}=\sqrt{4-\left(x-1\right)^2}=t\Rightarrow0\le t\le2\)
BPT trở thành:
\(f\left(t\right)=t^2+4t\le m\)
Để BPT nghiệm đúng với mọi \(t\in\left[0;2\right]\)
\(\Leftrightarrow m\ge\max\limits_{\left[0;2\right]}f\left(t\right)=12\)
\(\Rightarrow m\ge12\)