Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(2x^3+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x^2+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\frac{2\left(x^2+1\right)\left(x-2\right)}{\left(x+2\right)\left(x+1\right)}\)
Thay x=\(\frac{1}{2}\)
\(=\frac{2\left(\frac{1}{2}^2+1\right)\left(\frac{1}{2}-2\right)}{\left(\frac{1}{2}+2\right)\left(\frac{1}{2}+1\right)}\)
\(=-1\)
a) Phân thức M xác định khi và chỉ khi :
+) \(2x-2\ne0\Leftrightarrow x\ne1\)
+) \(2x+2\ne0\Leftrightarrow x\ne-1\)
+) \(1-\frac{x-3}{x+1}\ne0\)
\(\Leftrightarrow x-3\ne x+1\)
\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)
Vậy \(x\ne\left\{1;-1\right\}\)
b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)
\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)
\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)
\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)
\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)
\(M=\frac{1}{x-1}\)
\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)
Bạn sửa lại đề dùm mình nha, sai đề hơi nhiều đó.
ĐKXĐ:\(x\ne0;2\)
\(P=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2+2x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\\ P=\left(\frac{x\left(x-2\right)}{2\left(x^2+4\right)}-\frac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right).\frac{x^2-x-2}{x^2}\\ P=\left(\frac{x\left(x-2\right)}{2\left(x^2+4\right)}+\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right).\frac{x^2-2x+x-2}{x^2}\\ P=\left(\frac{x\left(x-2\right)^2}{2\left(x^2+4\right)\left(x-2\right)}+\frac{4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right).\frac{x\left(x-2\right)+\left(x-2\right)}{x^2}\)
\(P=\frac{x\left(x^2-4x+4\right)+4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\frac{x^3-4x^2+4x-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\frac{\left(x^3+4x\right)\left(x-2\right)\left(x+1\right)}{2\left(x^2+4\right)\left(x-2\right).x^2}\\ P=\frac{x\left(x^2+4\right)\left(x-2\right)\left(x+1\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\\ P=\frac{x+1}{2x}\)