K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

A = \(\left(a^{2019}+b^{2019}+c^{2019}\right)-\left(a^{2015}+b^{2015}+c^{2015}\right)\)

=> A = \(a^{2019}+b^{2019}+c^{2019}-a^{2015}-b^{2015}-c^{2015}\)

=> A = \(a^{2019}-a^{2015}+b^{2019}-b^{2015}+c^{2019}-c^{2015}\)

=> A = \(a^{2015}\left(a^4-1\right)+b^{2015}\left(b^4-1\right)+c^{2015}\left(c^4-1\right)\)

  Chứng minh A chia hết cho 2 : Nấu a, b, c là các số lẻ thì \(a^4-1,b^4-1,c^4-1\)là các số chẫn 

=> A là số chẵn => A chia hết cho 2

      Nếu a, b, c là số chẵn thì \(a^{2015},b^{2015},c^{2015}\)là số chẫn => A là số chẵn => A chia hết cho 2

 Chứng minh A chia hết cho 5:

Xét số tự nhiên n không chia hết cho 5, chứng minh \(n^4-1\)chia hết cho 5

Ta có : \(n=5k\pm1,n=5k\pm2\)với k là số thự nhiên

\(n^2\)có 1 trong 2 dạng : \(n^2=5k+1\)hoặc \(n^2=5k+4\)

\(n^4\)có duy nhất dang : \(n^4=5k+1\Rightarrow n^4-4=5k\)chia hết cho 5

Áp dụng vói n = a,b,c ta có :

A = \(a^{2015}\left(a^4-1\right)+b^{2015}\left(b^4-1\right)+c^{2015}\left(c^4-1\right)\)chia hết cho 5

Chứng minh A chia hết cho 3

Xét với n là số chính phương thì \(n^2\)chia 3 dư 0 hoặc 1

Do đó nếu \(n^2\)chia 3 dư 0 => A chia hết cho 3 với n = a,b,c

Nếu \(n^2\)chia 3 dư 1 thì \(n^4\)chia 3 dư 1 => \(n^4\)- 1 chia hết cho 3

=> A chia hết cho 3 với n = a,b,c

Vậy A chia hết cho 2 ; 3 ; 5 mà ( 2;3;5 ) = 1 

=> A chia hết cho 30

6 tháng 9 2019

Hoàng Lộc trả lời kiểu gì vậy

7 tháng 9 2019

Thay 2019 = ab +bc +ca vào cái mẫu rồi phân tích thành nhân tử -> Biểu thức trên bằng 1.

NV
23 tháng 9 2019

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: \(a=b=c\Rightarrow P=2020^3\)

TH2: \(a+b+c=0\) ko đủ dữ kiện tính ra giá trị cụ thể của P

14 tháng 10 2016

Từ gt , ta có :

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)

\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)

\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)

\(\Rightarrow N=0\)

16 tháng 9 2019

Đặt a-b+2015=k ( k là số nguyên)

mà a-b+2015 , b-c+2015,c-a+2015 là ba số nguyên liên tiếp => b-c+2015=k+1

c-a+2015=k+2

Có a-b+2015+b-c+2015+c-a+2015=k+k+1+k+2

<=>6045=3k+3

<=> 6042=3k

<=> k=2014

=> a-b+2015=2014 , b-c+2015=2014+1=2015 , c-a+2015=2014+2=2016

=> ba số nguyên liên tiếp đó là 2014,2015,2016 <=> b=c=a+1 và a,b,c tự nhiên

P/s: Chẳng biết có đúng không

@Lê Thị Thục Hiền

23 tháng 9 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)  hinh nhu theo co dieu kien a,b,c  ko dong thoi = 0

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=>  \(\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)

<=> \(\left(a+b\right)\left(ac+bc+c^2\right)=-ab\left(a+b\right)\)

<=> \(\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)

<=> \(\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

<=> \(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

<=> a+b=0 hoac a+c=0 hoac b+c=0

do khi luy thua a,b,c len cach so mu le la 27,41,2019 thi a,b,c ko doi dau nen \(a^{27}+b^{27}=0.hoac.b^{41}+c^{41}=0.hoac.c^{2019}+a^{2019}=0\)

P = 0 

Vay P = 0 

Study well

23 tháng 9 2019

Ta có : \(\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}-\frac{1}{a}\Rightarrow\frac{b+c}{bc}=\frac{a-a-b-c}{a^2+ab+ac}\)

\(\Leftrightarrow\frac{b+c}{bc}=\frac{-b-c}{a^2+ab+ac}\Leftrightarrow\left(b+c\right)\left(a^2+ab+ac\right)=-\left(b+c\right)bc\)

\(\left(b+c\right)\left(a^2+ab+ac\right)+\left(b+c\right)bc=0\)

\(\Rightarrow\left(b+c\right)\left(a^2+ab+ac+bc\right)=0\)

\(\Leftrightarrow\left(b+c\right)[\left(a+b\right)a+c\left(a+b\right)]=0\)

\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\c^{2019}+a^{2019}=0\end{cases}}\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\a^{2019}+c^{2019}=0\end{cases}}\end{cases}}}\)

29 tháng 6 2019

*Biết là muộn rồi nhưng vẫn cứ gửi lời giải ra đây vậy*

Từ giả thiết suy ra \(2019=\frac{1}{a+b+c}\)

\(ab+bc+ca=\frac{abc}{a+b+c}\)\(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

⇒ Trong ba số a, b, c có hai số đối nhau. Không mất tính tổng quát giả sử đó là a và b

\(c=\frac{1}{2019}\)

\(A=\frac{1}{2019^{2019}}\)

19 tháng 11 2019

What grade are you?

19 tháng 11 2019

Sai rồi còn bày đặt Tiếng Anh .Lần sau không biết thì im đi không lại bị người ta nói cho 

What grade are you in ? Okay

17 tháng 10 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\times\dfrac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

\(\Rightarrow N=0\)