Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
TH1: \(a=b=c\Rightarrow P=2020^3\)
TH2: \(a+b+c=0\) ko đủ dữ kiện tính ra giá trị cụ thể của P
Từ gt , ta có :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)
\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)
\(\Rightarrow N=0\)
Đặt a-b+2015=k ( k là số nguyên)
mà a-b+2015 , b-c+2015,c-a+2015 là ba số nguyên liên tiếp => b-c+2015=k+1
c-a+2015=k+2
Có a-b+2015+b-c+2015+c-a+2015=k+k+1+k+2
<=>6045=3k+3
<=> 6042=3k
<=> k=2014
=> a-b+2015=2014 , b-c+2015=2014+1=2015 , c-a+2015=2014+2=2016
=> ba số nguyên liên tiếp đó là 2014,2015,2016 <=> b=c=a+1 và a,b,c tự nhiên
P/s: Chẳng biết có đúng không
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) hinh nhu theo co dieu kien a,b,c ko dong thoi = 0
<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
<=> \(\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
<=> \(\left(a+b\right)\left(ac+bc+c^2\right)=-ab\left(a+b\right)\)
<=> \(\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
<=> \(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
<=> a+b=0 hoac a+c=0 hoac b+c=0
do khi luy thua a,b,c len cach so mu le la 27,41,2019 thi a,b,c ko doi dau nen \(a^{27}+b^{27}=0.hoac.b^{41}+c^{41}=0.hoac.c^{2019}+a^{2019}=0\)
P = 0
Vay P = 0
Study well
Ta có : \(\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}-\frac{1}{a}\Rightarrow\frac{b+c}{bc}=\frac{a-a-b-c}{a^2+ab+ac}\)
\(\Leftrightarrow\frac{b+c}{bc}=\frac{-b-c}{a^2+ab+ac}\Leftrightarrow\left(b+c\right)\left(a^2+ab+ac\right)=-\left(b+c\right)bc\)
\(\left(b+c\right)\left(a^2+ab+ac\right)+\left(b+c\right)bc=0\)
\(\Rightarrow\left(b+c\right)\left(a^2+ab+ac+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)[\left(a+b\right)a+c\left(a+b\right)]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\c^{2019}+a^{2019}=0\end{cases}}\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\a^{2019}+c^{2019}=0\end{cases}}\end{cases}}}\)
*Biết là muộn rồi nhưng vẫn cứ gửi lời giải ra đây vậy*
Từ giả thiết suy ra \(2019=\frac{1}{a+b+c}\)
⇒ \(ab+bc+ca=\frac{abc}{a+b+c}\)⇒ \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
⇒ \(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)
⇒ \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
⇒ Trong ba số a, b, c có hai số đối nhau. Không mất tính tổng quát giả sử đó là a và b
⇒ \(c=\frac{1}{2019}\)
⇒ \(A=\frac{1}{2019^{2019}}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\times\dfrac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
\(\Rightarrow N=0\)
A = \(\left(a^{2019}+b^{2019}+c^{2019}\right)-\left(a^{2015}+b^{2015}+c^{2015}\right)\)
=> A = \(a^{2019}+b^{2019}+c^{2019}-a^{2015}-b^{2015}-c^{2015}\)
=> A = \(a^{2019}-a^{2015}+b^{2019}-b^{2015}+c^{2019}-c^{2015}\)
=> A = \(a^{2015}\left(a^4-1\right)+b^{2015}\left(b^4-1\right)+c^{2015}\left(c^4-1\right)\)
Chứng minh A chia hết cho 2 : Nấu a, b, c là các số lẻ thì \(a^4-1,b^4-1,c^4-1\)là các số chẫn
=> A là số chẵn => A chia hết cho 2
Nếu a, b, c là số chẵn thì \(a^{2015},b^{2015},c^{2015}\)là số chẫn => A là số chẵn => A chia hết cho 2
Chứng minh A chia hết cho 5:
Xét số tự nhiên n không chia hết cho 5, chứng minh \(n^4-1\)chia hết cho 5
Ta có : \(n=5k\pm1,n=5k\pm2\)với k là số thự nhiên
\(n^2\)có 1 trong 2 dạng : \(n^2=5k+1\)hoặc \(n^2=5k+4\)
\(n^4\)có duy nhất dang : \(n^4=5k+1\Rightarrow n^4-4=5k\)chia hết cho 5
Áp dụng vói n = a,b,c ta có :
A = \(a^{2015}\left(a^4-1\right)+b^{2015}\left(b^4-1\right)+c^{2015}\left(c^4-1\right)\)chia hết cho 5
Chứng minh A chia hết cho 3
Xét với n là số chính phương thì \(n^2\)chia 3 dư 0 hoặc 1
Do đó nếu \(n^2\)chia 3 dư 0 => A chia hết cho 3 với n = a,b,c
Nếu \(n^2\)chia 3 dư 1 thì \(n^4\)chia 3 dư 1 => \(n^4\)- 1 chia hết cho 3
=> A chia hết cho 3 với n = a,b,c
Vậy A chia hết cho 2 ; 3 ; 5 mà ( 2;3;5 ) = 1
=> A chia hết cho 30