K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

\(ĐKXĐ:x\ge0\)

Đề sai??? 

Sửa lại

\(a,P=\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}-1}{x-\sqrt{x}+1}\)

\(=\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x+2-x+\sqrt{x}-1+x-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

28 tháng 1 2020

\(a,Đkxđ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x+1}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)\)

\(=x-\sqrt{x}\)

\(b,P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\)

Ta có: \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\forall x\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{4}\)

\(Min_P=-\frac{1}{4}\Leftrightarrow x=\frac{1}{4}\)

c, Đề thiếu không bạn?

1 tháng 2 2020

Không bn nha

10 tháng 8 2020

\(A=\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{1}\)

\(A=\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}.\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

\(A=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(A=x-1\)

(ĐKXĐ là: \(x>0;x\ne1\))

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Lời giải:

ĐKXĐ: \(x\geq 0; x\neq 1\)

Ta có:

\(A=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}-1}{(\sqrt{x}+2)(\sqrt{x}-1)}\)

\(=\frac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{x+3\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{(\sqrt{x}+1)(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

15 tháng 10 2019

a) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2\sqrt{x}}\)

\(A=\left(\frac{x+2}{\sqrt{x^3}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2\sqrt{x}}\)

\(A=\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2\sqrt{x}}{\sqrt{x}-1}\)

\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2\sqrt{x}}{\sqrt{x}-1}\)

\(A=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2\sqrt{x}}{\sqrt{x}-1}\)

\(A=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2\sqrt{x}}{\sqrt{x}-1}=\frac{2\sqrt{x}}{x+\sqrt{x}+1}\)

15 tháng 10 2019

Ta có: A-\(\frac{2}{3}\)= \(\frac{\sqrt{x}}{x+\sqrt[]{x}+1}-\frac{2}{3}\)=\(\frac{6\sqrt{x}-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)

=\(\frac{-2\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}\)=\(\frac{-2}{3}.\frac{\left(\sqrt{x}-1\right)^2}{x+\sqrt{x}+1}\)<0

hay A\(-\frac{2}{3}\)<0

=>A<\(\frac{2}{3}\)

24 tháng 3 2019

ĐK: \(x>0,x\ne4\)

1, \(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\frac{\left(x-4\right)^2}{\sqrt{x}^3}\)

\(A=\frac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\frac{\left(x-4\right)^2}{x}\)

\(A=\frac{2}{\sqrt{x}+2}.\frac{x-4}{x}\)

\(A=\frac{2\sqrt{x}-4}{x}\)

2, \(x=\left(\sqrt{3}+1\right)^2\)

Thay \(x=\left(\sqrt{3}+1\right)^2\):

\(A=\frac{2\sqrt{3}-2}{\left(\sqrt{3}+1\right)^2}\)

3, \(A\ge\frac{1}{4}\Rightarrow\)\(\frac{2\sqrt{x}-4}{x}-\frac{1}{4}\ge0\)

\(\Leftrightarrow\frac{8\sqrt{x}-16-x}{4x}\ge0\)

\(\Rightarrow x-8\sqrt{x}+16\le0\)

\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(TM\right)\)

12 tháng 5 2017

a/ \(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\sqrt{x^2}-1+\sqrt{x}-1}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{3\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{1}{\left(\sqrt{x}-1\right)}\right)\)

\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{\sqrt{x}-1}{1}\right)\)

=> \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}\)

b/ \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}=\sqrt{x}-1\)

<=> \(4\sqrt{x}=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

<=> \(4\sqrt{x}=x-1\). Bình phương 2 vế, ta được:

<=> 16x=(x-1)2

<=> 16x=x2-2x+1

<=> x2-18x+1=0

\(\Delta'=81-1=80=>\sqrt{\Delta'}=4\sqrt{5}\)

=> \(x_1=9-4\sqrt{5}\)

\(x_2=9+4\sqrt{5}\)