K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2021

\(-x^2-2\left(m-1\right)x+2m-1>0\)

\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)

\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\ge\dfrac{1}{2}\)

NV
30 tháng 12 2020

\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)

Ta có:

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)

Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)

20 tháng 6 2023

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

20 tháng 6 2023

Có cách nào khác nx ạ?

NV
23 tháng 1 2021

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)x< m\\\left(m-4\right)x< 2m-7\end{matrix}\right.\)

- Với \(m=3\) ktm, \(3< m< 4\Rightarrow\left\{{}\begin{matrix}x>\dfrac{m}{m-3}\\x< \dfrac{2m-7}{m-4}\end{matrix}\right.\) thỏa mãn

- Với \(m< 3\Rightarrow\left\{{}\begin{matrix}x>\dfrac{m}{m-3}\\x>\dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}< \dfrac{1}{2}\\\dfrac{2m-7}{m-4}< \dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-3< m< 3\\\dfrac{10}{3}< m< 4\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

- Với \(m>4\Rightarrow\left\{{}\begin{matrix}x< \dfrac{m}{m-3}\\x< \dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}>0\\\dfrac{2m-7}{m-4}>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m>4\\m< \dfrac{7}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>4\)

- Với \(3< m< 4\Rightarrow\left\{{}\begin{matrix}x< \dfrac{m}{m-3}\\x>\dfrac{2m-7}{m-4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m}{m-3}>0\\\dfrac{2m-7}{m-4}< \dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\\\dfrac{10}{3}< m< 4\end{matrix}\right.\) \(\Rightarrow\dfrac{10}{3}< m< 4\)

Vậy \(m>\dfrac{10}{3}\)

Đã test lại với 1 giá trị m nằm giữa \(\dfrac{10}{3}\) và \(\dfrac{7}{2}\) vẫn thỏa mãn, key của em có vẻ không đúng, 

NV
11 tháng 5 2021

\(\Leftrightarrow mx-m^2\ge x-1\Leftrightarrow\left(m-1\right)x\ge m^2-1\)

- Với \(m=1\) tập nghiệm của BPT là R (ktm)

- Với \(m>1\) \(\Rightarrow m-1>0\Rightarrow x\ge\dfrac{m^2-1}{m-1}=m+1\) hay \([m+1;+\infty)\) (ktm)

- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le m+1\) hay \((-\infty;m+1]\) có vẻ giống?

Nhẩm trắc nghiệm thì \(ax>b\) có tập nghiệm chứa dương vô cùng khi a>0, có tập nghiệm chứa âm vô cùng khi a<0

\(ax< b\) thì ngược lại

11 tháng 5 2021

nhứt nách hehe

13 tháng 3 2021

Chưa đủ đề bạn ơi

À đr mik viết thiếu cảm ơn bn nha 

11 tháng 5 2021

Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)

\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)

\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)

\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)

Yêu cầu bài toán thỏa mãn khi:

\(m\le minf\left(t\right)=-2\)

11 tháng 5 2021

viết rõ dòng cuối cho em được ko ạ em ko hiểu lắm

19 tháng 3 2021

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.