K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Độ dài đường cao hình chóp A.BCD chính là khoảng cách từ A đến (BCD).

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12

⇒ (BCD) nhận Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12 là 1 vtpt

⇒ (BCD): x – 2y – 2z + 2 = 0

⇒ Độ dài đường cao hình chóp A.BCD là:

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12

25 tháng 5 2019

Chiều cao AH của tứ diện ABCD chính là khoảng cách từ điểm A đến mp (BCD) :

Giải bài 3 trang 92 sgk Hình học 12 | Để học tốt Toán 12

12 tháng 7 2019

 

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12

a) Cách 1:

Phương trình đoạn chắn (ABC) là:

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12 hay x + y + z – 1 = 0.

Thay tọa độ điểm D(-2; 1; -1) ta được: (-2) + 1 + (-1) – 1 = -3 ≠ 0

⇒ D không nằm trong (ABC)

⇒ A, B, C, D không đồng phẳng

⇒ A, B, C, D là bốn đỉnh của một tứ diện.

Cách 2:

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12

⇒ A, B, C, D không đồng phẳng

⇒ A, B, C, D là bốn đỉnh của hình tứ diện.

 

27 tháng 11 2017

Giải bài 1 trang 91 sgk Hình học 12 | Để học tốt Toán 12

11 tháng 4 2017

Phương trình đường thẳng SB: x - t, y = 2t, z = 2 - 2t. Để tìm B' ta giải hệ

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tương tự, C'(0; 1; 1)

NV
6 tháng 3 2023

\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)

Phương trình (P):

\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)

6 tháng 3 2023

Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).

Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:

3x - 2y - z + d = 0, trong đó d là vế tự do.

Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):

3(1) -2(0) - (1) + d = 0

⇒ d = -2

Vậy phương trình của mặt phẳng (P) là:

3x - 2y - z - 2 = 0,

và đáp án là B.

8 tháng 3 2019

Giải bài 3 trang 92 sgk Hình học 12 | Để học tốt Toán 12

(BCD) nhận Giải bài 3 trang 92 sgk Hình học 12 | Để học tốt Toán 12 là 1 vtpt

⇒ (BCD): 16x – 6y – 4z + 8 = 0

hay (BCD): 8x – 3y – 2z + 4 = 0.

13 tháng 12 2018

Giải bài 3 trang 92 sgk Hình học 12 | Để học tốt Toán 12

(α) chứa AB và song song với CD

⇒ (α) nhận (1; 0; -1) là 1 vtpt

(α) đi qua A(-2; 6; 3)

⇒ (α): x – z + 5 = 0.

25 tháng 4 2018

de ***** tu lam dihihi

9 tháng 9 2019

Chọn B

Mặt phẳng (ABC) đi qua B (1; 0; -1) và có một véctơ pháp tuyến là:

Phương trình mặt phẳng (ABC): 5x + 2y - z - 6 = 0

Độ dài đường cao xuất phát từ đỉnh D (0; 0; d) của tứ diện ABCD bằng d(D, (ABC))

Theo bài ra ta có:

Do D thuộc tia Oz nên D (0; 0; 3).