K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

A B C M D E F G H

a) Xét \(\Delta AMB\)và \(\Delta AMC\)có :

AM ( cạnh chung )

AB = AC ( gt )

MB = MC ( gt )

Suy ra : \(\Delta AMB\)\(\Delta AMC\)( c.c.c )

\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}\)( hai cạnh tương ứng ) mà \(\widehat{AMB}+\widehat{AMC}=180^o\)

\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\frac{\widehat{BMC}}{2}=90^o\)\(\Rightarrow\)AM \(\perp\)BC

b) Xét \(\Delta ADF\)và \(\Delta CDE\)có :

DE = DF ( gt )

\(\widehat{EDC}=\widehat{FDA}\)( hai góc đối đỉnh )

DA = DC ( gt )

Suy ra : \(\Delta ADF\)\(\Delta CDE\)( c.g.c )

\(\Rightarrow\widehat{FAD}=\widehat{ECD}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên AF // EC

c) gọi H là giao điểm của BD và AE

Xét \(\Delta AHD\)vuông tại H có : \(\widehat{HAD}+\widehat{ADH}=90^o\)( 1 )

Xét \(\Delta BAD\) vuông tại A có : \(\widehat{ABD}+\widehat{BDA}=90^o\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{HAD}=\widehat{ABD}\)

Xét \(\Delta BAD\)và \(\Delta ACG\)có :

\(\widehat{DBA}=\widehat{GAC}\)( cmt )

AB = AC ( gt )

\(\widehat{BAD}=\widehat{ACG}\)( = \(90^o\))   

Suy ra : \(\Delta BAD\)\(\Delta ACG\)( g.c.g )

\(\Rightarrow AD=CG\)( hai cạnh tương ứng )

Mà \(AD=DC=\frac{AC}{2}\)

\(\Rightarrow CG=\frac{AC}{2}=\frac{AB}{2}\)( vì AB = AC )

\(\Rightarrow AB=2CG\)

Sửa đề: vuông tại A

a: Xét ΔADB vuông tại A và ΔEDB vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔADB=ΔEDB

b: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADK=góc EDC

=>ΔDAK=ΔDEC

=>AK=EC

 

a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có

AH chung

HB=HK

Do đó: ΔAHB=ΔAHK

b: Ta có: HE\(\perp\)AC

AB\(\perp\)AC

Do đó: HE//AB

=>\(\widehat{EHA}=\widehat{HAB}\)

mà \(\widehat{HAB}=\widehat{HAK}\)

nên \(\widehat{EHA}=\widehat{HAK}\)