K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

x,y thuộc Z 

A= (13+2)x -(26-3)y = 13x + 2x -26y + 3y =13(x-2y) + (2x+3y) = 13(x-2y) + B

A chia hết 13 => (2x+3y) chia hết 13 vì 13(x-2y) chắc chắn chia hết 13=> B chia hết 13

ngược lại cũng đúng.

15 tháng 5 2020

Bài làm: ( Toán lớp 6 ).

x , y đều thuộc Z.

A = ( 13 + 2 )x - ( 26 - 3)y.

   = 13x + 2x - 26y + 3y.

   = 13( x - 2y ) + ( 2x + 3y ) = 13 ( x - 2y ) + B.

Vì A chia hết cho 13.

Suy ra: ( 2x + 3y ) : 13.

Vì 13( x - 2y ) : 13.

Suy ra: B chia hết cho 13.

Học tốt #

11 tháng 12 2015

a) Ta có :

5x + 9 + 2x + 5

= 7x + 14

7x chia hết cho 7

14 chia hết cho 7

=> 7x + 14 chia hết cho 7 (1)

Mà 5x + 9 chia hết cho 7 (2)

Từ (1) và (2) suy ra :

2x + 5 chia hết cho 7

5 tháng 1 2020

\(7x+11y⋮13\)\(\Rightarrow2\left(7x+11y\right)⋮13\)\(\Rightarrow14x+22y⋮13\)(1)

mà \(13x⋮13\)và \(26y⋮13\)\(\Rightarrow13x+26y⋮13\)(2)

Từ (1) và (2) \(\Rightarrow\left(14x+22y\right)-\left(13x+26y\right)⋮13\)

\(\Rightarrow14x+22y-13x-26y⋮13\)\(\Rightarrow x-4y⋮13\left(đpcm\right)\)

2 tháng 9 2021

10a+b\(⋮\)13

=> 4(10a+b)\(⋮\)13

=> 40a+4b\(⋮\)13

=> a+4b+39a\(⋮\)13

Mà 39a\(⋮\)13 nên a+4b\(⋮\)13

Vậy nếu 10a+b\(⋮\)13 thì a+4b\(⋮\)13

+) Chứng minh chiều xuối :

Cho a + 4b ⋮ 13 ; CMR : 10a + b ⋮ 13

Vì a + 4b ⋮ 13 => 10 . ( a + 4b ) ⋮ 13 => 10a + 40b ⋮ 13

Xét hiệu ( 10a + 40b ) - ( 10a + b ) = 39b ⋮ 13

\(\text{Vì }\hept{\begin{cases}10a+40b⋮13\\\left(10a+40b\right)-\left(10a+b\right)⋮13\end{cases}}\)

=> 10a + b ⋮ 13 (1) 

+) Chứng minh chiều ngược :

Cho 10a + b ⋮ 13 ; CMR : a + 4b ⋮ 13

Vì 10a + b ⋮ 13 => 4 . ( 10b + a ) ⋮ 13 => 40a + 4b ⋮ 13

Xét hiệu : ( 40a + 4b ) - ( a + 4b ) = 39a ⋮ 13

\(\text{Vì }\hept{\begin{cases}40a + 4b ⋮ 13\\\left(40a+4b\right)-\left(a+4b\right)⋮13\end{cases}}\)

=> a + 4b ⋮ 13 (2)

Từ (1) và (2) => a + 4b ⋮ 13 <=> 10a + b ⋮ 13

14 tháng 7 2016

                       Ta có : 7a + 2b chia hết cho 13

                       => 10(7a + 2b) chia hết cho 13

                      => 70a + 20b chia hết cho 13

                     => 70a + 7b + 13b chia hết cho 13

                    => 7(10a + b) + 13b chia hết cho 13

             VÌ 13b chia hết cho 13 nên 7(10a + b) chia hết cho 13 mà (7,13) = 1

                   => 10a + b chia hết cho 13

              Vậy 10a + b chia hết cho 13 (ĐPCM)

19 tháng 11 2016

a) \(abcdeg=1000abc+deg\)
\(=1001abc-abc+deg\)

\(=1001abc-\left(abc-deg\right)\)

\(=abc\cdot13\cdot77-\left(abc-deg\right)\)

Vì abc . 13 . 77 chia hết cho 13 ; abc - deg chia hết cho 13

=> abcdeg chia hết cho 13 ( đpcm )

19 tháng 11 2016

b) Ta có : \(abc\) chia hết cho 29\(=>\left(1000a+100b+10c+d\right)\) chia hết cho 29

\(=>2000a+200b+20c+2d\) chia hết cho 29

\(=>\left(2001a+203b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>\left(29\cdot69a+29\cdot7b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>29\cdot\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(29\cdot\left(69a+7b+c+d\right)\) chia hết cho 29 và \(29.\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29

\(=>a+3b+9c+27d\) chia hết cho 29

3 tháng 5 2016

 6x+11y chia hết cho 31

=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)

=> 6x + 42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

 Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)

3 tháng 5 2016

 6x+11y chia hết cho 31

=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)

=> 6x + 42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

 Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)

28 tháng 7 2021

Ta có: 6x+11y=6x+11y+31y=6x+42y=6.(x+7y)

Mà 6 và 31 là 2 số nguyên tố cùng nhau

⇒ x+7y⋮31

x+7y=6.(x+7y)=6x+42y=6x+11y+31y

Mà 6 và 31 là 2 số nguyên tố cùng nhau, 31y⋮31

⇒ 6x+11y⋮31

a: 

6x+11y chia hết cho 31

=>6x+11y+31y chia hết cho 31

=>6x+42y chia hết cho 31

=>x+7y chia hết cho 31

b: x+7y chia hết cho 31

=>6x+42y chia hét cho 31

=>6x+11y chia hết cho 31