Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)
\(A=\sqrt{x}+\dfrac{2}{\sqrt{x}}\ge2\cdot\sqrt{\sqrt{x}\cdot\dfrac{2}{\sqrt{x}}}=2\sqrt{2}\)
Dấu '=' xảy ra khi \(\sqrt{x}\cdot\sqrt{x}=2\)
hay \(x=2\)
`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`
Ta cần tìm `max(5/(sqrtx-2))`
Nếu `0<=x<4` thì `5/(sqrtx-2)<0`
Nếu `x>4` thì `5/(sqrtx-2)>0`
Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`
`=>sqrtx-2>=sqrt5-2`
`=>5/(sqrtx-2)<=5/(sqrt5-2)`
`=>C<=1+5/(sqrt5-2)=11+sqrt5`
Vậy `C_(max)=11+sqrt5<=>x=5`
a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:
\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)
Vậy: Khi x=4 thì B=3
b) Ta có: P=A-B
\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)
\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(A=\dfrac{5\sqrt{x}-3}{x+\sqrt{x}+1}\\ \Leftrightarrow Ax+A\sqrt{x}+A-5\sqrt{x}+3=0\\ \Leftrightarrow Ax+\sqrt{x}\left(A-5\right)+A+3=0\)
Coi đây là PT bậc 2 ẩn \(\sqrt{x}\), PT có nghiệm
\(\Leftrightarrow\Delta=\left(A-5\right)^2-4A\left(A+3\right)\ge0\\ \Leftrightarrow A^2-10A+25-4A^2-12A\ge0\\ \Leftrightarrow-3A^2-22A+25\ge0\\ \Leftrightarrow-\dfrac{25}{3}\le A\le1\)
Dấu \("="\Leftrightarrow\) PT có nghiệm kép \(\Leftrightarrow\sqrt{x}=\dfrac{5-A}{2A}=\dfrac{5x+8}{x+\sqrt{x}+1}\cdot\dfrac{x+\sqrt{x}+1}{10\sqrt{x}-6}\\ \Leftrightarrow\sqrt{x}=\dfrac{5x+8}{10\sqrt{x}-6}\Leftrightarrow10x-6\sqrt{x}=5x+8\\ \Leftrightarrow5x-6\sqrt{x}-8=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=-\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow x=4\)
Vậy \(A_{max}=1\Leftrightarrow x=4\)