Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay phân thức P vào biểu thức A rồi rút gọn chúng ta thu được A = u + v với điều kiện các biểu thức có nghĩa.
b) Tương tự a) ta có B = 1.
Thay P = \(\frac{xy}{x-y}\) vào biểu thức ta được :
\(\frac{x.\frac{xy}{x-y}}{x+\frac{xy}{x-y}}-\frac{y.\frac{xy}{x-y}}{y-\frac{xy}{x-y}}\)
Ta có :
\(\frac{x.\frac{xy}{x-y}}{x+\frac{xy}{x-y}}=\frac{x^2y}{x-y}:\left(x+\frac{xy}{x-y}\right)\)
= \(\frac{x^2y}{x-y}:\frac{x\left(x-y\right)+xy}{x-y}\)
= \(\frac{x^2y}{x-y}:\frac{x^2}{x-y}\)
= \(\frac{x^2y}{x-y}.\frac{x-y}{x^2}\)
= \(y\)
\(\frac{y.\frac{xy}{x-y}}{y-\frac{xy}{x-y}}=\frac{xy^2}{x-y}:\left(y-\frac{xy}{x-y}\right)\)
= \(\frac{xy^2}{x-y}:\frac{y\left(x-y\right)-xy}{x-y}\)
= \(\frac{xy^2}{x-y}:\frac{-y^2}{x-y}\)
= \(\frac{xy^2}{x-y}.\frac{x-y}{-y^2}\)
= \(-x\)
Vậy giá trị biểu thức bằng \(y-\left(-x\right)=x+y\)
Chúc bạn học tốt !!!
\(\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}\)
Để biểu thức trên nhận giá trị âm khi \(\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}< 0\)
\(\Rightarrow x^3-2x^2-4x+8< 0\)do \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-2x\left(x+2\right)< 0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)^2< 0\Leftrightarrow x< -2\)
Thay vào biểu thức ta được:
Ta có:
Vậy giá trị biểu thức bằng y – (-x) = x + y.