K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\sqrt{x}-1\)

23 tháng 10 2021

a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

                        Đk: \(x>0\) và \(x\ne1\)

\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

        \(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b) Thay \(x=3+2\sqrt{2}\) vào A ta được:

  \(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)

      \(=\sqrt{2}+1-1=\sqrt{2}\)

(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))

NV
16 tháng 10 2019

\(A=\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}\)

\(=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

\(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{2}+1\)

\(\Rightarrow A=\sqrt{x}-1=\sqrt{2}+1-1=\sqrt{2}\)

9 tháng 12 2017

a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với \(x>0;x\ne1\)

\(\Rightarrow A=\dfrac{x}{\sqrt{x-1}}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

= \(\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

= \(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

= \(\sqrt{x}-1\)

b) Với \(x>0;x\ne1\)

A=\(\sqrt{x}-1\)

Ta có : \(x=3+2\sqrt{2}\) ( Thỏa mãn ĐKXĐ )

Thay \(x=3+2\sqrt{2}\) vào biểu thức A ta có :

A=\(\sqrt{3+2\sqrt{2}}-1\)= \(\sqrt{2}+1-1\)=\(\sqrt{2}\)

9 tháng 12 2017

\(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

a ) Rút gọn :

\(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

\(\Rightarrow A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

\(\Rightarrow A=\sqrt{x}-1\)

b ) \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

Thay x vào A, ta có :

\(\sqrt{\left(\sqrt{2}+1\right)^2}-1=\sqrt{2}+1-1=\sqrt{2}\)

Vậy ...............

14 tháng 2 2019

Các bn giúp mk vs nha ! Mk cảm ơn trước.hiuhihilolang

25 tháng 7 2017

Bài 1 tìm điều kiện của x để biểu thức sau có nghĩa :

a) \sqrt{4-3x}

ĐKXĐ : 4 - 3x \(\ge0\) <=> -3x \(\ge-4\Rightarrow x\le\dfrac{4}{3}\)

Vậy ĐKXĐ của x là x \(\le\dfrac{4}{3}\) để biểu thức \(\sqrt{4-3x}\) được xác định

b) \sqrt{\frac{-2}{1+2x}}

ĐKXĐ : \(-\dfrac{2}{1+2x}\ge0\) . Vì -2 < 0 nên => 1 + 2x < 0 <=> 2x < -1 => x < - \(\dfrac{1}{2}\)

Vậy ĐKXĐ của x là \(x< -\dfrac{1}{2}\)

c) \(\sqrt{7x}-\sqrt{2x-3}\)

Vì 7 > 0 nên => x > 0

ĐKXĐ : 2x - 3 \(\ge0\) <=> 2x \(\ge3=>x\ge\dfrac{3}{2}\)

Vậy ĐKXĐ của x là x > 0 và x \(\ge\dfrac{3}{2}\)

d) \sqrt{\frac{5}{2x+5}}+\frac{x-1}{x+2}

Ta có ĐKXĐ : \(\sqrt{\dfrac{5}{2x+5}}\) \(\ge0\) mà vì 5 > 0 nên => 2x + 5 > 0 <=> 2x > - 5 => x > \(-\dfrac{5}{2}\)

Ta có ĐKXĐ : \(\dfrac{x-1}{x+2}\ge0\) ; x + 2 > 0 => x \(\ne-2\)

Ta có BXD :

x x-1 x+2 -2 1 0 0 0 - - + - + + + + - (x-1)/(x+2)

=> \(x< -2\) hoặc x \(\ge1\)

Vậy ĐKXĐ của x là : x > - \(\dfrac{5}{2}\) ; x < -2 hoặc x \(\ge1\)

25 tháng 7 2017

mình sửa lại câu b là bỏ đi dấu "=" nhé!

Câu d) ĐK:\(\left\{{}\begin{matrix}\dfrac{5}{2x+5}\ge0\\x+2\ne0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x+5>0\\x\ne-2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x\ne-2\end{matrix}\right.\)

17 tháng 10 2018

thế biểu thức A đâu b