K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

mà đề cho (a^2 + b^2) + (c^2 + d^2) thì phải liên tưởng đến (a^2 + b^2)(c^2 + d^2) để đưa vào bất đẳng thức. Vậy phải xuất phát từ biểu thức này và biến đổi theo một cách nào đó cho nó xuất hiện giả thiết là : ad - bc = 1. Ở đây là thêm và bớt 2abcd 
Ta có: (a^2 + b^2)(c^2 + d^2) = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 - 2abcd + 2abcd = (ad - bc)^2 + (ac + bd)^2 
Thay: ad - bc = 1 => 1 + (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) 
Áp dụng BĐT Cauchy: 
(a^2 + b^2) + (c^2 + d^2) ≥ 2√[(a^2 + b^2)(c^2 + d^2)] 
=> a^2 + b^2 + c^2 + d^2 + ac + bd ≥ 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd 
Do đó chỉ cần CM: 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd ≥ √3 
<=> 2 √[1 + (ac + bd)^2] + ac + bd ≥ √3 
Đặt ac + bd = x và p = 2√(1 + x^2) + x 
Ta có IxI = √(x^2) < 2√(1 + x^2) ; mà IxI ≥ -x => p > 0 
Xét: p^2 = 4(1 + x)^2 + 4x√(1 + x^2) + x^2 = (1 + x^2) + 4x√(1 + x^2) + 4x^2 + 3 
= [√(1 + x^2) + 2x]^2 + 3 ≥ 3 => p^2 ≥ 3 => p ≥ √3 
=> S ≥ √3 
b/ Dấu đẳng thức xảy ra khi a^2 + b^2 = c^2 + d^2 và √(1 + x^2) + 2x = 0 => x = -1/√3 
Khi đó có: a^2 + b^2 = c^2 + d^2 và ac + bd = -1/√3 và ad - bc = 1 
Theo biến đổi ở đầu bài thì (a^2 + b^2)(c^2 + d^2) = (ad - bc)^2 + (ac + bd)^2 = 1 + 1/3 = 4/3 
Do đó: a^2 + b^2 = c^2 + d^2 = 2/√3 
Ta có: (a + c)^2 + (b + d)^2 = a^2 + c^2 + b^2 + d^2 + 2ac + 2bd = 2. 2/√3 + 2.(-1/√3) = 2/√3 
vậy: (a + c)^2 + (b + d)^2 = 2/√3

Học chi cho lắm cx bằng nhau à

Câu 1:(2 điểm):a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và 1/a +1/b +1/c = 1/2018. Tính giá trị của biểu thức A=1/a^2017 + 1/b^2017 + 1/c^2017b) Rút gọn biểu thức [ (căn(căn(5)+2)+căn(căn(5)-2))/căn(căn(5)+1) ] - căn(3-2.căn(2))Câu 2:(1.5 điểm):Giải phương trình (x^2)+(4x^2)/(x^2-4x+4) = 5Câu 3:(1.5 điểm):Tìm số tự nhiên y để (y^2+1)x^3 + (y^3-1)x chia hết cho 6, biết x thuộc N*Câu 4:(2,5 điểm):Cho ABC nhọn, ba...
Đọc tiếp

Câu 1:(2 điểm):
a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và 1/a +1/b +1/c = 1/2018. Tính giá trị của biểu thức A=1/a^2017 + 1/b^2017 + 1/c^2017
b) Rút gọn biểu thức [ (căn(căn(5)+2)+căn(căn(5)-2))/căn(căn(5)+1) ] - căn(3-2.căn(2))
Câu 2:(1.5 điểm):
Giải phương trình (x^2)+(4x^2)/(x^2-4x+4) = 5
Câu 3:(1.5 điểm):
Tìm số tự nhiên y để (y^2+1)x^3 + (y^3-1)x chia hết cho 6, biết x thuộc N*
Câu 4:(2,5 điểm):
Cho ABC nhọn, ba đường cao AD, BF, CE cắt nhau tại H.
a) Giả sử HB = 6cm; HF = 3cm; CE = 11cm và CH>HE. Tính độ dài CH;EH.
b)Gọi I là giao điểm EF và AH. Cmr IH/AI=HD/AD
c) Gọi K là điểm nằm giữa C và D. Kẻ AS vuông góc HK tại S. Cm SK là phân giác của góc DSI
Câu 5:(1,5 điểm):
Cho tam giác ABC, I là điểm nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh BC, AC, AB lần lượt tại các điểm D, E, F. Cmr AI/ID+BI/IE+CI/IF>=6
Câu 6:(1.5 điểm):
Cho x, y, z > 0. Cmr (x^2-z^2)/(y+z) + (z^2-y^2)/(x+y) + (y^2-x^2)/(x+z) >=0
CÁC AE GIÚP EM VỚI (ĐANG GẤP).

2
23 tháng 9 2017

cho hình vẽ đi

không có hình vẽ

=> Ta không trả lời được

23 tháng 9 2017

Bạn ko cần thiết làm bài hình đâu, bạn chỉ cần làm 1 trong 6 bài là đc !

22 tháng 10 2015

1,a\(\frac{x}{\sqrt{\left(x-1\right).1}}\ge\frac{x}{\frac{x}{2}}=2\left(dpcm\right)\)

b,tương tự như câu a( đều xài co-sy cả mà)

\(\frac{a^2}{b-1}\ge\frac{a^2}{\frac{b^2}{4}}=\frac{4a^2}{b^2}\)tương tư như vậy, biểu thức sẽ :

\(\ge4\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}\right)\ge4.2=8\)

bằng khi a=b

 

25 tháng 10 2015

lm đc phần a là ra b, dùng dấu = xảy ra khi ...

9 tháng 11 2017

Xét \(\sqrt{a^2-ab+b^2}\) = \(\sqrt{\left(a^2+2ab+b^2\right)-3ab}\) = \(\sqrt{\left(a+b\right)^2-3ab}\)

     >= \(\sqrt{\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2}\)( bđt ab <= (a+b)^2/4) = 1/2 (a+b)

Tương tự căn (b^2-bc+c^2) >= 1/2(b+c) ; (c^2-ca+a^2) >= 1/2 (c+a)

=> B >= 1/2 . (a+b+b+c+c+a) = 1/2 . 2 . (a+b+c) = 1 => ĐPCM

Dấu "=" xảy ra <=> a=b=c=1/3

24 tháng 6 2017

Rất vui vì đề không sai^^ 
Tối tui làm :v