K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

a) \(Q=\frac{a+2\sqrt{a}+1}{a-1}.\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}-a+\sqrt{a}-1}\right)=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\left[\frac{a+1}{\left(\sqrt{a}-1\right)\left(a+1\right)}-\frac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right]=\frac{\sqrt{a}+1}{\sqrt{a}-1}.\frac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+1\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2\left(a+1\right)}=\frac{\sqrt{a}+1}{a+1}\)

b) Ta có \(a>1\Leftrightarrow\sqrt{a}>1\Leftrightarrow\sqrt{a}-1>0\Leftrightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\Leftrightarrow a-\sqrt{a}>0\Leftrightarrow a+1>\sqrt{a}+1\Leftrightarrow\frac{\sqrt{a}+1}{a+1}< 1\Leftrightarrow Q< 1\)Vậy a>1 thì Q<1

NV
10 tháng 5 2019

\(Q=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\left(\sqrt{a}-1\right)+\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{a+1}{\left(a+1\right)\left(\sqrt{a}-1\right)}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{a-2\sqrt{a}+1}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{\sqrt{a}+1}{a+1}\)

b/ Đề sai, đề đúng phải là \(a>1\) thì \(Q< 1\)

Do \(a>1\Rightarrow a>\sqrt{a}\Rightarrow\frac{\sqrt{a}+1}{a+1}< \frac{a+1}{a+1}=1\Rightarrow Q< 1\)

10 tháng 5 2019

thanks bạn nhiều

14 tháng 8 2020

chỉ làm được câu a do hơi gà 

\(P=\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\)

\(=\frac{1-\sqrt{a}+1+\sqrt{a}}{2\left(1-a\right)}-\frac{a^2+2}{\left(1-a\right)\left(1-a+a^2\right)}\)

\(=\frac{1-a+a^2-a^2+2}{\left(1-a\right)\left(1-a+a^2\right)}=\frac{3-a}{\left(1-a\right)\left(1-a+a^2\right)}\)

14 tháng 8 2020

sửa dòng cuối :))

\(\frac{1-a+a^2-a^2-2}{\left(1-a\right)\left(1-a+a^2\right)}=\frac{-1-a}{\left(1-a\right)\left(1-a+a^2\right)}\)

27 tháng 4 2019

\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

        \(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)

         \(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)

        \(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)

       \(=-3\)

\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

     \(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

    \(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

    \(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

b, Ta có \(B< A\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)

\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)

\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)

Vậy ...

13 tháng 7 2019

a) ĐKXĐ : \(a>0;a\ne1\)

\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\)

\(Q=\left(\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right)\)

\(Q=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{3}\)

\(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}\)

b) \(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}>2\Rightarrow\sqrt{a}-6\sqrt{a}+2>0\Rightarrow-5\sqrt{a}>-2\Rightarrow0< \sqrt{a}< \frac{2}{5}\)

\(\Rightarrow0< a< \frac{4}{25}\)

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

31 tháng 7 2019

\(A=\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\)\(\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\)\(\left(\frac{-\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)\)

\(=\left(\sqrt{a}+1\right)\left(-\sqrt{a}-1\right)\)

\(=-\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)=-\left(\sqrt{a}+1\right)^2\)

\(b,A=-a^2\Rightarrow-\left(\sqrt{a}+1\right)^2=a^2\)

\(\Leftrightarrow a=\sqrt{a}+1\Rightarrow a-\sqrt{a}-1=0\)

\(\Rightarrow4a-4\sqrt{a}-4=0\)

\(\Rightarrow4a-4\sqrt{a}+1-5=0\)

\(\Rightarrow\left(2\sqrt{a}-1\right)^2-\sqrt{5}^2=0\)

\(\Rightarrow\left(2\sqrt{a}-1+\sqrt{5}\right)\left(2\sqrt{a}-1-\sqrt{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2\sqrt{a}=1-\sqrt{5}\\2\sqrt{a}=1+\sqrt{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=\frac{1-\sqrt{5}}{2}\\\sqrt{a}=\frac{1+\sqrt{5}}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{\left(1-\sqrt{5}\right)^2}{4}\left(tm\right)\\a=\frac{\left(1+\sqrt{5}\right)^2}{4}\left(tm\right)\end{cases}}\)

17 tháng 10 2019

\(1,P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)

\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)

\(=\frac{x-\sqrt{x}}{x\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)