K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2 tháng 9 2021

mình cảm ơn!

 

a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

29 tháng 5 2021

a) ĐKXĐ: \(x>0,x\ne1\)

\(P=\dfrac{x-2\sqrt{x}}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\dfrac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}}{\left(\sqrt{x}\right)^3-1}+\dfrac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}+\dfrac{1+2x-2\sqrt{x}}{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}\)

\(=\dfrac{x-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}+\dfrac{1+2x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x-2\sqrt{x}\right)\sqrt{x}+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1+2x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}+x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(x+\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

b) Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+2>0\\x+\sqrt{x}+1>0\end{matrix}\right.\Rightarrow P>0\)

Vì \(x>0\Rightarrow2x+\sqrt{x}>0\Rightarrow2x+2\sqrt{x}+2-\left(\sqrt{x}+2\right)>0\)

\(\Rightarrow2\left(x+\sqrt{x}+1\right)>\sqrt{x}+2\Rightarrow\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}< 2\)

mà P nguyên \(\Rightarrow\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}=1\Rightarrow\sqrt{x}+2=x+\sqrt{x}+1\)

\(\Rightarrow x-1=0\Rightarrow x=1\) mà \(x\ne1\Rightarrow\) không có x để P nguyên

 

a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để |P|>P thì P<0

=>căn x-2<0

=>0<x<4

=>x=1

1 tháng 1 2022

a) Điều kiện: \(x\ge0;x\ne1;x\ne\dfrac{1}{4}\)\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt[]{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right).\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{2x\sqrt{x}-\sqrt{x}+x}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

b)Vì \(x\ge0\) nên \(x+\sqrt{x}\ge0\) và \(x+\sqrt{x}+1>0\)

Do đó: \(E\ge0\). Dấu "=" xảy ra \(\Leftrightarrow x=0\)

c)\(E\ge\dfrac{6}{7}\Leftrightarrow\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\ge\dfrac{6}{7}\Leftrightarrow7x+7\sqrt{x}\ge6x+6\sqrt{x}+6\)

                \(\Leftrightarrow x+\sqrt{x}-6\ge0\Leftrightarrow x-2\sqrt{x}+3\sqrt{x}-6\ge0\)

                 \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ge0\)

                  \(\Leftrightarrow\sqrt{x}-2\ge0\Leftrightarrow\sqrt{x}\ge2\Leftrightarrow x\ge4\)