K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

Ta có: \(P=\frac{x^3-3}{x^2-2x-3}-\frac{2\left(x-3\right)}{x+1}+\frac{x+3}{3-x}\)

\(=\frac{x^3-3}{\left(x+1\right)\left(x-3\right)}-\frac{2x-6}{x+1}-\frac{x+3}{x-3}\)

\(=\frac{x^3-3}{\left(x+1\right)\left(x-3\right)}-\frac{\left(2x-6\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^3-3-\left(2x^2-12x+18\right)-\left(x^2+4x+3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^3-3-2x^2+12x-18-x^2-4x-3}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^3-3x^2+8x-24}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^2\left(x-3\right)+8\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}=\frac{\left(x-3\right)\left(x^2+8\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\frac{x^2+8}{x+1}\)

b) Để P nguyên thì \(x^2+8⋮x+1\)

\(\Leftrightarrow x^2+2x+1-2x+7⋮x+1\)

\(\Leftrightarrow\left(x+1\right)^2-2x+7⋮x+1\)

\(\left(x+1\right)^2⋮x+1\)

nên \(-2x+7⋮x+1\)

\(\Leftrightarrow-2x-2+9⋮x+1\)

\(-2x-2⋮x+1\)

nên \(9⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(9\right)\)

\(\Leftrightarrow x+1\in\left\{1;-1;3;-3;9;-9\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;2;-4;8;-10\right\}\)(tm)

Vậy: Khi \(x\in\left\{0;-2;2;-4;8;-10\right\}\) thì P có giá trị nguyên

c)

Khi x>-1 thì x+1>0

\(x^2+8\ge0\forall x\)

nên khi x>-1 và \(x\ne3\) thì \(P=\frac{x^2+8}{x+1}>0\)

Để \(P\ge4\) thì \(\frac{x^2+8}{x+1}\ge4\)

\(\Leftrightarrow x^2+8\ge\left(x+1\right)\cdot4\)

\(\Leftrightarrow x^2+8\ge4x+4\)

\(\Leftrightarrow x^2+8-4x-4\ge0\)

\(\Leftrightarrow x^2-4x+4\ge0\)

\(\Leftrightarrow\left(x-2\right)^2\ge0\)(luôn đúng)

Dấu '=' xảy ra khi x-2=0

hay x=2

10 tháng 8 2021

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

10 tháng 8 2021

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

18 tháng 1 2021

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

18 tháng 1 2021

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

20 tháng 1 2021

\(A=\left(\frac{x^2-16}{x-4}+1\right):\left(\frac{x-2}{x-3}+\frac{x+3}{x+1}+\frac{x+2-x^2}{x^2-2x-3}\right)\)

\(=\left(x+5\right):\left(\frac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}+\frac{x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+5\right):\left(\frac{x^2+x-2x-2+x^2-9+x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+5\right):\left(\frac{x^2-9}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+5\right):\left(\frac{x+3}{x+1}\right)=\frac{x+3}{\left(x+5\right)\left(x+1\right)}\)

20 tháng 1 2021

Sai đề ở chỗ \(\left(\frac{x^2-16}{x-4}+1\right)\)thành -1

3 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)

a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{-1}{x+2}\)

b) Khi \(\left|x\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)

c) Để P = 7

\(\Leftrightarrow-\frac{1}{x+2}=7\)

\(\Leftrightarrow7\left(x+2\right)=-1\)

\(\Leftrightarrow7x+14=-1\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\frac{15}{7}\)

Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)

d) Để \(P\inℤ\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1\right\}\)

Vậy để  \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)

24 tháng 1 2020

a) \(H=\left(\frac{x}{x+2}-\frac{x^3-8}{x^3+8}.\frac{x^2-2x+4}{x^2-4}\right).\frac{x+3}{x+2}\)

\(=\left(\frac{x}{x+2}-\frac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{x^2-2x+4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+3}{x+2}\)

\(=\left(\frac{x^2+2x}{\left(x+2\right)^2}-\frac{\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right).\frac{x+3}{x+2}\)

\(=\frac{-4}{\left(x+2\right)^2}.\frac{x+3}{x+2}=\frac{-4x-12}{\left(x+2\right)^3}\)

3 tháng 10 2020

\(ĐK:x\ne\pm1;x\ne0;x\ne3\)

Với \(x\ne\pm1;x\ne0;x\ne3\)thì\(M=\frac{x^3+2x^2-x-2}{x^3-2x^2-3x}\left[\frac{\left(x+2\right)^2-x^2}{4x^2-4}-\frac{3}{x^2-x}\right]=\frac{x^2\left(x+2\right)-\left(x+2\right)}{\left(x^3-x\right)-\left(2x^2+2x\right)}\left[\frac{x^2+4x+4-x^2}{4x^2-4}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)}\left[\frac{4\left(x+1\right)}{4\left(x+1\right)\left(x-1\right)}-\frac{3}{x\left(x-1\right)}\right]=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-3x\right)}\left[\frac{1}{x-1}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+2\right)}{x\left(x-3\right)}.\frac{x-3}{x\left(x-1\right)}=\frac{x+2}{x^2}\)

M = 3 \(\Leftrightarrow\frac{x+2}{x^2}=3\Leftrightarrow3x^2-x-2=0\Leftrightarrow\left(x-1\right)\left(3x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}\)

Mà \(x\ne1\)(theo điều kiện) nên x =-2/3