K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

\(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)

\(=\sqrt{xy}+\sqrt{x}-\sqrt{y}\)

Ta có: \(P=\sqrt{xy}+\sqrt{x}-\sqrt{y}=2\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{y}+1\right)=3\)

\(\Rightarrow\left(\sqrt{x}-1,\sqrt{y}+1\right)=\left(1,3;3,1\right)\)

\(\Rightarrow\left(x,y\right)=\left(4,4;16,0\right)\)

3 tháng 12 2017

Phần đầu lm kiểu gì để ra được ạ ?

 

\(A=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-xy\sqrt{x}-xy\sqrt{y}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x\sqrt{x}\left(1-y\right)+x\left(1-y\sqrt{y}\right)-y\left(1-\sqrt{y}\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{\left(1-\sqrt{y}\right)\left[x\sqrt{x}\left(1+\sqrt{y}\right)+x+x\sqrt{y}+xy-y\right]}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x\sqrt{x}+x\sqrt{xy}+x+x\sqrt{y}+xy-y}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x\left(\sqrt{x}+1\right)+x\sqrt{y}\left(\sqrt{x}+1\right)+y\left(x-1\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x+x\sqrt{y}+y\sqrt{x}-y}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)

Để A=2 thì x=2; y=2

\(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x\left(\sqrt{x}+1\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-yx\sqrt{x}-xy\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x+y+\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)+2\sqrt{xy}-xy-1}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=1-\dfrac{\left(\sqrt{xy}-1\right)^2}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}=2\\ \Rightarrow\dfrac{\left(\sqrt{xy}-1\right)^2}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}=1\\ \Leftrightarrow\left(\sqrt{xy}-1\right)^2=\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)\\ \Leftrightarrow xy-2\sqrt{xy}+1=\sqrt{x}-\sqrt{y}+1-\sqrt{xy}\\ \Leftrightarrow\sqrt{x}-\sqrt{y}-xy+\sqrt{xy}=0\)

tự giải quyết tiếp nhá :)) h có việc :)) nếu còn ko bt thì mai làm nốt cho :))

4 tháng 12 2017
\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)

\(=\sqrt{xy}+\sqrt{x}-\sqrt{y}\)

\(P=2\Rightarrow\sqrt{xy}+\sqrt{x}-\sqrt{y}=2\)

\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=4;y=0\end{matrix}\right.\) (t/m)

6 tháng 12 2017

làm thế nào để ra được P = \(\sqrt{xy}\)+ \(\sqrt{x}\)- \(\sqrt{y}\) vậy bn ?

26 tháng 10 2020

\(\text{méo biết}\)

11 tháng 4 2021

= căn xy + căn x + căn y còn lại tự tính