K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

a) A = \(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|=\left|x\right|+\frac{3}{\left|x\right|}+ \left|x-2\right|\)

b) A nhận gt nguyên khi |x| thuộc Ư(3) (các ước dương)

=> |x| thuộc {1;3} => x thuộc {-3;-1;1;3}

20 tháng 7 2016

Mik không biết nhưng bạn click mik nhé .
 

17 tháng 6 2015

\(P=\sqrt{\left(\frac{x^3-3}{x}\right)^2+12}+\sqrt{x^2+4x+4-8x}\)

\(P=\sqrt{\left(x^2-\frac{3}{x}\right)^2+12}+\sqrt{\left(x-2\right)^2}\)

\(P=\sqrt{\left(x^2-\frac{3}{x}\right)^2+12}+\left|x-2\right|\)

x nguyên nên |x - 2| nguyên. Để P nguyên thì \(\left(x^2-\frac{3}{x}\right)^2+12=p^2\) (p  nguyên)

=> \(\left(x^2-\frac{3}{x}\right)^2-p^2=-12\) và p2 > 12; \(x^2-\frac{3}{x}\) nguyên

<=> \(\left(x^2-\frac{3}{x}-p\right)\left(x^2-\frac{3}{x}+p\right)=-12\)

Vì \(\left(x^2-\frac{3}{x}+p\right)-\left(x^2-\frac{3}{x}-p\right)=2p\) chẵn nên \(\left(x^2-\frac{3}{x}-p\right);\left(x^2-\frac{3}{x}+p\right)\) cùng chẵn hoặc cùng lẻ

=> \(\left(x^2-\frac{3}{x}-p\right)=2;\left(x^2-\frac{3}{x}+p\right)=-6\) hoặc \(\left(x^2-\frac{3}{x}-p\right)=-2;\left(x^2-\frac{3}{x}+p\right)=6\) hoặc 

\(\left(x^2-\frac{3}{x}-p\right)=6;\left(x^2-\frac{3}{x}+p\right)=-2\) hoặc 

\(\left(x^2-\frac{3}{x}-p\right)=-6;\left(x^2-\frac{3}{x}+p\right)=2\)

+) Trường hợp 1 : => p = -4 ; \(x^2-\frac{3}{x}=-2\) => x3 - 3 = -2x => x = 1 

+) Th2: => 2p = 8 => p = 4 =>  \(x^2-\frac{3}{x}=\) 2 => x3 - 3 = 2x => x. (x2 - 2) = 3 ; x nguyên => ko có giá trị x nào thỏa mãn

Tương tự th3; th4.........................

 

17 tháng 6 2015

Mấy bạn lớp 9 giúp mình bài này với

24 tháng 5 2017

Điều kiện \(x\ne0\)

\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)

\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)

\(=\left|x+\frac{3}{x}\right|+\left|x-2\right|\)

Để A nguyên thì x phải là ước nguyên của 3 hay \(x=-3;-1;1;3\)

22 tháng 7 2019

xin chào bạn

4 tháng 4 2016

?

?

?

?

?

?

?

?

?

?

?

?

?

?

ơơơ

ơ

ơ

ơ

ơ

ơ

ơ

ơ

4 tháng 4 2016

????????????????????

5 tháng 4 2020

1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)

\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)

2) Để \(P=2\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)

\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)

\(\Leftrightarrow6\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)

Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)

3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)

Thay \(x=\frac{1}{4}\)vào P, ta được :

\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)

4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)

\(\Leftrightarrow9x-3\sqrt{x}-6=0\)

\(\Leftrightarrow3x-\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=3x-2\)

\(\Leftrightarrow x=9x^2-12x+4\)

\(\Leftrightarrow9x^2-13x+4=0\)

\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)

Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\)\(x=1\left(tm\right)\)

Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)

5) Để biểu thức nhận giá trị nguyên

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)

\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)

\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)

\(\Leftrightarrow8⋮2-\sqrt{x}\)

\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)

Ta loại các giá trị < 0

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)

\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

\(\)