Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{1}{x^2-4x}+\dfrac{2}{16-x^2}+\dfrac{4}{4x+16}\right):\dfrac{1}{4x}\left(x\ne4;x\ne-4;x\ne0\right).\)
\(A=\left(\dfrac{1}{x\left(x-4\right)}+\dfrac{-2}{\left(x+4\right)\left(x-4\right)}+\dfrac{1}{x+4}\right).4x\).
\(A=\dfrac{x+4-2x+x^2-4x}{x\left(x-4\right)\left(x+4\right)}.4x.\)
\(A=\dfrac{x^2-5x+4}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{4\left(x-1\right)}{x+4}.\)
a/ \(=\left(\frac{2\left(1-2x\right)-\left(4x^2+1\right)-\left(1+2x\right)}{1-4x^2}\right).\frac{4x^2-1}{2}=\frac{2-4x-4x^2-1-1-2x}{1-4x^2}.\frac{4x^2-1}{2}=\frac{-4-6x-4x^2}{1-4x^2}.\frac{4x^2-1}{2}=\frac{4x^2+6x+4}{2}=2x^2+3x+2\)
b/ có A = 2 \(\Leftrightarrow2x^2+3x+2=2\Rightarrow2x^2+3x=0\Rightarrow x\left(2x+3\right)=0\Rightarrow x=0\)
hoặc \(2x+3=0\Rightarrow2x=-3\Rightarrow x=-\frac{3}{2}\)
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
Cho biểu thức P = (4x−x21−4x2 1−x):(4x2−x41−4x2 +1)
a) Rút gọn P
= (x^21+4x^2-3x)/(x^41-1)
b) Tìm x để P =< 0
b) Tìm x để P ≤0
( ) thứ nhất bạn viết rõ ra hơn được không .-.