Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\)
\(=\dfrac{3-\sqrt{3+x}}{6-x}\) \(\left(x=\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\text{ với 2009 dấu căn}\right)\)
\(=\dfrac{6-x}{\left(6-x\right)\left(3+\sqrt{3+x}\right)}=\dfrac{1}{3+\sqrt{3+x}}\)
Ta cần chứng minh \(\dfrac{1}{3+\sqrt{3+x}}< \dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{3+x}>1\)
\(\Leftrightarrow x>-2\) đúng
\(\Rightarrowđpcm\)
Đặt \(a=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2010 dấu căn), suy ra :
\(a^2=3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), nên
\(a^2-3=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), do đó ta có :
\(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\).
Do \(a+3>4\) nên \(\frac{1}{3+a}<\frac{1}{4}\) hay \(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}<\frac{1}{4}\) (đpcm).
\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)
\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)
Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))
Xét tử :
\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{64}=3-8=-5\) ( bước này tự hiểu nhé )
Xét mẫu :
\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{4}=6-2=4\) ( bước này cũng tự hiểu -,- )
\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}>\frac{-5}{4}>-1\) \(\left(1\right)\)
(Xét 1 lần nữa -,- )
Xét tử :
\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{4}=3-2=1\)
Xét mẫu :
\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{64}=6-8=-2\)
\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}< \frac{1}{-2}< 0\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(-1< A< 0\)
Vậy A không thể là 1 số nguyên
...
Có cách khác ngắn hơn nha bn!
Đặt:
\(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a>0\)(có 2019 dấu căn)
\(\Rightarrow3+\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2\) (có 2018 dấu căn)
\(\Rightarrow\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2-3\) (có 2018 dấu căn)
Thay vào A,ta đc:
\(A=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{1}{3+a}\)
Do a>0 \(\Rightarrow0< A=\frac{1}{3+a}< 1\)
Vậy : A ko thể là số nguyên
Ta có :Đặt t = \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}} ( 2014 dấu căn )\)
\(\Rightarrow\) t > \(\sqrt{3} > \sqrt{1} = 1\)
\(\Rightarrow\) \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\)(2013 dấu căn ) = \(t^2 -3\)
Do đó : \(M = \frac{3-t}{6-( t^2 - 3 )}\)= \(\frac{3-t}{9-t^2}\) = \(\frac{3-t}{(3-t)(3+t)}\) = \(\frac{1}{3+t}\)
Vì t>1 \(\Rightarrow\) 3+t > 4 \(\Rightarrow\) \(\frac{1}{3+t}\) < \(\frac{1}{4}\)
Vậy M < \(\frac{1}{4}\)