K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

=x2-bx-ax+ab+x2-cx-bx+bc+x2-cx-ax+x2

=(x2+x2+x2+x2)-(ax+bx+cx+ax+bx+cx)+ab+bc+ca

=4x2-2(a+b+c)x+ab+bc+ca

Thay x=\(\frac{1}{2}\)(a+b+c) vào M ta đc:

M=4.\(\frac{1}{4}\)(a+b+c)2-2(a+b+c).\(\frac{1}{2}\)(a+b+c)+ab+bc+ca

  =(a+b+c)2-(a+b+c)2+ab+bc+ca

  =ab+bc+ca

7 tháng 6 2017

mk ko hiểu bản có thể giải thích hộ mk ko

Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số: a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\) Bài 2: Thực hiện phép tính: a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số:

a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\)

Bài 2: Thực hiện phép tính:

a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\)

Bài 3: Cho biểu thức \(\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

a) Hãy tìm điều kiện của x để biểu thức được xác định.

b) Rút gọn biểu thức.

Bài 4: Cho biểu thức: \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

a) Rút gọn biểu thức A.

b) Tính giá trị biểu thức A tại x, biết |x| = \(\frac{1}{2}\)

c) Tìm giá trị của x để A < 0.

Các cậu giúp tớ với nha ~ Tớ cảm ơn trước ^^

5
AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Bài 2:

a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$

\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)

\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)

\(=\frac{10}{2x+1}\)

b) ĐK : $x\neq 0;-1$

\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)

\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)

b)

\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)

\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)

\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)

22 tháng 2 2020

\(M=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)

     \(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ca+x^2\)

     \(=4x^2-2ax-2bc-2cx+ab+bc+ca\)     

   \(=4x^2-2\left(a+b+c\right)x+ab+bc+ca\)

với \(x=\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c\Rightarrow2x=a+b+c\)

\(\Rightarrow M=\left(a+b+c\right)^2-\left(a+b+c\right)^2+ab+bc+ca\)

            \(=ab+bc+ca\)

NV
2 tháng 4 2019

Bài 1:

ĐKXĐ: \(x\ne\left\{-1;1\right\}\)

\(P=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)

\(P=\left(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x+3\right)}{2\left(x-1\right)\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)

\(P=\left(\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x^2-1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)

\(P=\frac{10.4.\left(x^2-1\right)}{2\left(x^2-1\right).5}=\frac{40}{10}=4\)

Bài 2:

ĐK: \(x\ne\left\{-2;2;\right\}\)

\(A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)

\(A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{6}\)

\(A=\left(\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)}{6}\)

\(A=\frac{-6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}=\frac{-1}{x-2}\)

b/ \(\left|x\right|=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}\\A=\frac{-1}{-\frac{1}{2}-2}=\frac{2}{5}\end{matrix}\right.\)

c/ \(A< 0\Rightarrow\frac{-1}{x-2}< 0\Rightarrow\frac{1}{x-2}>0\Rightarrow x-2>0\Rightarrow x>2\)

\(\)

2 tháng 4 2019

Mong sau này sẽ được cậu giúp đỡ thật nhiều :)