Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\left[\frac{x^2+3x+2}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x^2+9x}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2-8x^2}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-4x^2\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x}{3x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x+x^2-3x-1}{3x}=\frac{x^2-x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b) Với \(x=6013\)( thỏa mãn ĐKXĐ )
Thay \(x=6013\)vào biểu thức ta được:
\(M=\frac{6013-1}{3}=\frac{6012}{3}=2004\)
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
a, Ta có : \(M=4x^2-9-2\left(x^2+10x+25\right)-2\left(x^2-x+2x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2x^2+2x-4x+4\)
\(=-22x-55\)
b, - Thay \(x=-2\dfrac{1}{3}=-\dfrac{7}{3}\) vào M ta được :
\(M=-\dfrac{11}{3}\)
c, - Thay M = 0 ta được : -22x - 55 = 0
=> x = -2,5
Vậy ...
a) Ta có: \(M=\left(2x+3\right)\left(2x-3\right)-2\left(x+5\right)^2-2\left(x-1\right)\left(x+2\right)\)
\(=4x^2-9-2\left(x^2+10x+25\right)-2\left(x^2+2x-x-2\right)\)
\(=4x^2-9-2x^2-20x-50-2\left(x^2+x-2\right)\)
\(=2x^2-20x-59-2x^2-2x+4\)
\(=-22x-55\)
b) Thay \(x=-2\dfrac{1}{3}\) vào biểu thức \(M=-22x-55\), ta được:
\(M=-22\cdot\left(-2+\dfrac{1}{3}\right)-55\)
\(=-22\cdot\left(\dfrac{-6}{3}+\dfrac{1}{3}\right)-55\)
\(=-22\cdot\dfrac{-5}{3}-55\)
\(=\dfrac{110}{3}-55=\dfrac{110}{3}-\dfrac{165}{3}\)
hay \(M=-\dfrac{55}{3}\)
Vậy: Khi \(x=-2\dfrac{1}{3}\) thì \(M=-\dfrac{55}{3}\)
c) Để M=0 thì -22x-55=0
\(\Leftrightarrow-22x=55\)
hay \(x=-\dfrac{5}{2}\)
Vậy: Khi M=0 thì \(x=-\dfrac{5}{2}\)
a: \(M=\dfrac{18+5x+15+3x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{8x+24}{\left(x+3\right)\left(x-3\right)}=\dfrac{8}{x-3}\)
b: Thay x=11 vào M, ta được:
\(M=\dfrac{8}{11-3}=1\)
a) \(M=\dfrac{18}{x^2-9}+\dfrac{5}{x-3}+\dfrac{3}{x+3}.\left(x\ne\pm3\right).\)
\(M=\dfrac{18}{\left(x-3\right)\left(x+3\right)}+\dfrac{5}{x-3}+\dfrac{3}{x+3}=\dfrac{18+5\left(x+3\right)+3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{18+5x+15+3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{24+8x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{8\left(3+x\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{8}{x-3}.\)
b) Thay \(x=11\left(TM\right)\) vào biểu thức M:
\(\dfrac{8}{11-3}=\dfrac{8}{8}=1.\)
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
M = 2004