Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a) ( x - 2)2 - ( x + 3)( x - 3)= 17
=> x2 - 4x + 4 - x2 + 9 - 17 = 0
=> -4x - 4 = 0
=> -4( x + 1 ) = 0
=> x = -1
Vậy,...
b)4( x - 3)2 - ( 2x - 1)( 2x + 1) = 10
=> 4( x2 - 6x + 9) - 4x2 + 1 - 10 = 0
=> - 24x + 36 - 9 = 0
=> -24x + 27 = 0
=> -3( 8x - 9) = 0
=> x = \(\dfrac{9}{8}\)
Vậy,...
c) ( x - 4)2 - ( x - 2)( x + 2)= 36
=> x2 - 8x + 16 - x2 + 4 - 36 = 0
=> -8x - 16 = 0
=> -8( x + 2) = 0
=> x = -2
d) ( 2x + 3)2 - ( 2x + 1)( 2x - 1) = 10
=> 4x2 + 12x + 9 - 4x2 + 1 - 10 = 0
=> 12x = 0
=> x = 0
Vậy,...
Bài 2.
\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a) ĐKXĐ : ( x + 1)( 2x - 6) # 0
=> 2( x + 1)( x - 3) # 0
=> x # -1 ; x # 3
Vậy,...
b) Để P = 1
=> \(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)
=> \(\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}=1\)
=> 3x = 2x - 6
=> x = -6 ( thỏa mãn ĐKXĐ)
Vậy,...
Bài 3.
P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)
a) Để P có nghĩa tức P xác định .
ĐKXĐ : x - 1 # 0 => x # 1
* 1 - x2 # 0 => x # 1 ; x # -1
Vậy,...
b) P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)
P = \(\dfrac{x^2+x-x^2-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)( x# 1; x# -1)
c) Để P = -1 thì :
\(\dfrac{1}{x+1}=-1\)
=> -x - 1 = 1
=> x = -2 ( thỏa mãn ĐKXĐ )
Vậy,...
a) Ta có: \(P=\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\cdot\dfrac{1-x^2}{2}\)
\(=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\cdot\dfrac{-\left(x-1\right)\left(x+1\right)}{2}\)
\(=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+2\right)\left(x-1\right)}{2\left(x+1\right)}\)
\(=\dfrac{2\left(x-2\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2\cdot\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^2-2x+1\right)\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^3+2x^2-2x^2-4x+x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^3-3x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-x^3+3x-2}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^3+5x-6}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-\left(x^3-5x+6\right)}{2\left(x-1\right)\left(x+1\right)}\)
ĐKXĐ:\(\left\{{}\begin{matrix}x-2\ne0\\4-x^2\ne0\\2+x\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x^2\ne4\\x\ne-2\\x\ne1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\pm2\\x\ne-2\\x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ne1\end{matrix}\right.\)
a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}
Thay x = 2, ta có B không tồn tại
Thay x = -1, ta có B = \(\dfrac{1}{3}\)
b)ĐKXĐ:x ≠ 2,-2
Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x
Do đó không tồn tại x thỏa mãn đề bài
\(B=\left(\dfrac{1}{x-2}-\dfrac{2x}{4-x^2}+\dfrac{1}{2+x}\right).\dfrac{2}{x-1}\)
\(\Rightarrow B=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\dfrac{2}{x-1}\)
\(\Rightarrow B=\dfrac{4x}{\left(x-2\right)\left(x+2\right)}.\dfrac{2}{x-1}\)
\(\Rightarrow B=\dfrac{8x}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
giúp mình với