K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 1 2018

Lời giải:

a)

\(A=(b^2+c^2-a^2)^2-4b^2c^2\)

\(A=(b^2+c^2-a^2)^2-(2bc)^2\)

\(A=(b^2+c^2-a^2-2bc)(b^2+c^2-a^2+2bc)\)

\(A=[(b-c)^2-a^2][(b+c)^2-a^2]\)

\(A=(b-c+a)(b-c-a)(b+c-a)(b+c+a)\)

b)

Viết lại: \(A=-(b+a-c)(c+a-b)(b+c-a)(a+b+c)\)

Nếu $a,b,c$ là ba cạnh của một tam giác:

Hiển nhiên \(b+c+a>0\)

\(b+a>c, b+c>a, a+c>b\)

\(\Rightarrow b+a-c, c+a-b, b+c-a>0\)

Do đó: \((b+a-c)(c+a-b)(b+c-a)(a+b+c)>0\)

\(\Rightarrow A=-(b+a-c)(c+a-b)(b+c-a)(a+b+c)< 0\)

Tức là A nhận giá trị âm (đpcm)

17 tháng 1 2018

=(b2+c2-a2-2bc)(b2+c2-a2+2bc)

=[(b2-2ab+c2)-a2][(b2+2bc+c2)-a2]

= [(b-c)2-a2][(b+c)2-a2]

=(b-c-a)(b-c+a)(b+c-a)(b+c+a)

1 tháng 1 2018

câu a làm theo hằng đẳng thức 

câu b ta sẽ đc (b^2 +c^2 -a^2 -2bc )(b^2 +c^2 -a^2 +2bc ) = { (b-c)^2 -a^2 } {(b+c)^2-a^2}

theo bất đẳng thức trong tam giác thì hiệu 2 cạnh  luôn nhỏ hơn cạnh còn lại nên {(b-c)^2-a^2} <0 

mà {(b+c)^2-a^2} >0 \(\Rightarrow\)A<0 

k cho mk cái nha

a, \(A=\left(b^2+c^2-a^2\right)-4b^2c^2\)

\(\Rightarrow A=\left(b^2+c^2-a^2\right)-\left(2bc\right)^{^2}\)

\(\Rightarrow A=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)

\(\Rightarrow A=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)

\(\Rightarrow A=\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\left(c+b+a\right)\)

b, Như bạn Trần Thị Nhung

21 tháng 7 2018

Ta có: (b^2 +c^2 -a^2)^2 -4b^2 .c^2

=(b^2 +c^2 -a^2)^2 -(2bc)^2

=(b^2 +c^2 -a^2 -2bc)(b^2 +c^2 -a^2 +2bc)

=(b^2 +c^2 -2bc -a^2) (b^2 +c^2 +2bc -a^2)

=[ (b-c)^2 -a^2] [(b+c)^2 -a^2]

=(b-c-a)(b-c+a)(b+c-a)(b+c+a)

Áp dụng bất đẳng thức tam giác, ta được: b-c-a<0 ,b-c+a>0 ,b+c-a>0 và b+c+a>0

Do đó: (b-c-a)(b-c+a)(b+c-a)(b+c+a)<0

Vậy (b^2 +c^2 -a^2)- 4b^2 .c^2 <0

Chúc bạn học tốt.

12 tháng 5 2022

trong \(1\) tam giác , ta luôn có :

\(b-c< a\) 

\(\Leftrightarrow\left(b-c\right)^2< a^2\)

\(\Leftrightarrow b^2-2bc+c^2< a^2\)

\(\Leftrightarrow b^2+c^2-a^2< 2bc\)

\(\Leftrightarrow\) \(\left(b^2+c^2-a^2\right)^2< \left(2bc\right)^2\)

\(\Leftrightarrow\) \(\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\left(đpcm\right)\)

10 tháng 6 2016

a) Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(M=\left(b^2+c^2-a^2\right)^2-4b^2c^2=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)

b) Nếu a,b,c là độ dài các cạnh của tam giác thì ta có : \(\hept{\begin{cases}a+b>c>0\\b+c>a>0\\a+c>b>0\end{cases}\Leftrightarrow\hept{\begin{cases}b-c-a< 0\left(1\right)\\b-c+a>0\left(2\right)\\b+c-a>0\left(3\right)\end{cases}}}\)

Nhân (1) , (2) , (3) theo vế cùng với a+b+c>0 được M<0

c) Dễ thấy rằng : Trong phân tích M thành nhân tử, ta thấy có xuất hiện thừa số (a+b+c)

Mà a+b+c chia hết cho 6 nên suy ra M chia hết cho 6

30 tháng 5 2019

câu 4 đổi xấu + thành dấu -