Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(A=\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)
\(=\left(x+4-1\right):\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\right)\)
\(=\left(x+3\right):\dfrac{x^2+x-2x-2+x^2-9-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\)
\(=\left(x+3\right):\dfrac{x^2-9}{\left(x-3\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-3\right)\left(x+1\right)}{x^2-9}\)
\(=x+1\)
ĐKXĐ: \(x\notin\left\{4;3;-1\right\}\)
2: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì \(x+1⋮x^2+x+1\)
\(\Leftrightarrow x^2+x⋮x^2+x+1\)
\(\Leftrightarrow x^2+x+1-1⋮x^2+x+1\)
mà \(x^2+x+1⋮x^2+x+1\)
nên \(-1⋮x^2+x+1\)
\(\Leftrightarrow x^2+x+1\inƯ\left(-1\right)\)
\(\Leftrightarrow x^2+x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x^2+x\in\left\{0;-2\right\}\)
\(\Leftrightarrow x^2+x=0\)(Vì \(x^2+x>-2\forall x\))
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Vậy: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì x=0
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
Lời giải:
a) ĐKXĐ: \(\left\{\begin{matrix} x+1\neq 0\\ x-1\neq 0\\ 2-2x^2\neq 0\end{matrix}\right.\Leftrightarrow x\neq \pm 1\)
b)
\(A=\left[\frac{x(x-1)}{(x-1)(x+1)}+\frac{x+1}{(x+1)(x-1)}+\frac{2x}{(x-1)(x+1)}\right].\frac{1}{x+1}=\frac{x^2+2x+1}{(x-1)(x+1)}.\frac{1}{x+1}\)
\(=\frac{(x+1)^2}{(x-1)(x+1)}.\frac{1}{x+1}=\frac{1}{x-1}\)
Để $A$ nguyên thì $1\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1\right\}$
$\Rightarrow x\in\left\{0;2\right\}$ (đều thỏa mãn đkxđ)
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{4x}{2-2x^2}\right):\left(x+1\right)\)
\(=\left(\dfrac{2x\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{2\left(x+1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{4x}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{1}{x+1}\)
\(=\dfrac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{2\left(x^2+2x+1\right)}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{2\left(x+1\right)^2}{2\left(x+1\right)^2\cdot\left(x-1\right)}\)
\(=\dfrac{1}{x-1}\)
b) Để A nguyên thì \(1⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(1\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1\right\}\)
hay \(x\in\left\{2;0\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;0\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{2;0\right\}\)