K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

A = (5x - 3y + 1)(7x + 2y - 2) = 0

a) thay y = 2 vào biểu thức, ta có:

<=> (5x - 3.2 + 1)(7x + 2.2 - 2) = 0

<=> (5x - 5)(7x + 2) = 0

<=> 5x - 5 = 0 hoặc 7x + 2 = 0

<=> 5x = 5 hoặc 7x = -2

<=> x = 1 hoặc x = -2/7

b) thay x = -2 vào biểu thức, ta có:

<=> [5.(-2) - 3y + 1][7.(-2) + 2y - 2) = 0

<=> [(-10) - 3y + 1][(-14) + 2y - 2] = 0

<=> (-3y - 9)(2y - 16) = 0

<=> -3y - 9 = 0 hoặc 2y - 16 = 0

<=> -3y = 9 hoặc 2y = 16

<=> y = -3 hoặc y = 8

13 tháng 2 2022

1.

a.\(\Leftrightarrow7x-5x=3+12\)

\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)

b.\(\Leftrightarrow6x-10-7x-7=2\)

\(\Leftrightarrow x=-19\)

c.\(\Leftrightarrow1-3x=4x-3\)

\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)

d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)

\(\Leftrightarrow-2=12\left(voli\right)\)

22 tháng 3 2020

Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0

=x(x+3)+2(x+3)=(x+2)(x+3)=0

Dễ rồi

2)\(x^2-x-6=0=x^2-3x+2x-6=0\)

=x(x-3)+2(x-3)=0

=(x+2)(x-3)=0

Dễ rồi

3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)

\(x^2+1>0\)

=>\(\left(x+2\right)^2=0\)

Dễ rồi

4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0

=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)

=>x+1=0

=>..................

5)\(x^2-7x+6=x^2-6x-x+6\) =0

=x(x-6)-(x-6)=0

=(x-1)(x-6)=0

=>.....

6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0

=2x(x+1)-5(x+1)=0

=(2x-5)(x+1)=0

7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0

Dễ rồi

Nghỉ đã hôm sau làm mệt

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

26 tháng 1 2021

Bài này có trong sbt toán 8 tập 2 mà!

Minh ko biet lambucminh

7 tháng 1 2021

a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0

<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0

* 1-3y=0 <=> y=1/3

* 2y - 10= 0 <=> y=5

vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5

b, Phương trình nhận y=2 làm nghiệm nên ta có:

(2x - 6 + 7)(3x+ 4 - 1)=0

<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0

<=> x=-1/ 2 hoặc x=-1

vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1

7 tháng 1 2021

a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0

<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0

* 1-3y=0 <=> y=1/3

* 2y - 10= 0 <=> y=5

vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5

b, Phương trình nhận y=2 làm nghiệm nên ta có:

(2x - 6 + 7)(3x+ 4 - 1)=0

<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0

<=> x=-1/ 2 hoặc x=-1

vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1

11 tháng 3 2020

Giúp mik với T_T

11 tháng 3 2020

a) vì x = -2 

A = 4y -1

B = -1 - 2y

A.B= 0 \(\Leftrightarrow\)(4y-1) . ( (-2y-1) = 0

\(\Leftrightarrow\orbr{\begin{cases}4y-1=0\\-2y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{4}\\y=\frac{-1}{2}\end{cases}}}\)

b)  Vì x = 2y nên

A = 6y + 4y + 5 = 10y +5

B = 4.2y - 2y +7 = 6y+7

A.B=0 \(\Leftrightarrow\left(10y+5\right).\left(6y+7\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{-1}{2}\\y=\frac{-7}{6}\end{cases}}\)

Với y= - 1/2 \(\Leftrightarrow\)x= -1

Với y = -7/6 \(\Leftrightarrow\)x=-7/3