K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

a) Để A và xác định thì \(\hept{\begin{cases}x-1\ne0\\x+1\ne0\\x^2-1\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

Vậy để A và xác định thì \(x\ne1\)\(x\ne-1\).

b) Ta có : A=B

\(\Rightarrow\frac{x+1}{x-1}+\frac{x-1}{1+x}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2-1}+\frac{\left(x-1\right)^2}{x^2-1}-\frac{4}{x^2-1}=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(x-1\right)^2-4=0\)

\(\Leftrightarrow x^2+2x+1+x^2-2x+1-4=0\)

\(\Leftrightarrow2x^2-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy để A=B thì \(x\in\left\{-1;1\right\}\).

a: ĐKXĐ: x<>-1

b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)

\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)

c: P=2

=>x^2-2x=2x+2

=>x^2-4x-2=0

=>\(x=2\pm\sqrt{6}\)

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)

\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)

\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)

\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)

\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)

\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)

\(=\dfrac{1}{2}\)

Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)

25 tháng 2 2021

a/

Để biểu thức được xác định

\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)

\(\odot2x-2\ne0\)

\(2x\ne2\)

\(x\ne1\)

\(\odot2x+2\ne0\)

\(2x\ne-2\)

\(x\ne-1\)

\(\odot x+1\ne0\)

\(x\ne-1\)

Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)

17 tháng 12 2021

a, điều kiện xác định: x2 - 4 ≠ 0    

                           ⇔ x2 ≠ 4

                           ⇔x ≠ 2 và x ≠ -2

b,  A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

       =\(\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{x^2-4}\)

       = \(\dfrac{x^2-x^2-2x+2x-4}{x^2-4}\)

       = \(\dfrac{x^2-4}{x^2-4}\)

       = 1

c, x=1    ⇒ A= \(\dfrac{1^2}{1^2-4}-\dfrac{1}{1-2}+\dfrac{2}{1+2}\)

                    = \(\dfrac{4}{3}\)

17 tháng 12 2021

a) Điều kiện xác định:
A\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.⇔\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b) Rút gọn:
A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).

A=  \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).

A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)[do MTC là (x-2)(x+2)].
A=  \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{x^2-\left(x^2+2x\right)+2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)

A= \(\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

26 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)

b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)

\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

6 tháng 1 2022

a) \(A=\dfrac{x^2-4x+4}{5x-10}.\) ĐK: \(x\ne2.\)

b) \(A=\dfrac{x^2-4x+4}{5x-10}=\dfrac{\left(x-2\right)^2}{5\left(x-2\right)}=\dfrac{x-2}{5}.\)

c) \(Thay\) \(x=-2018:\) \(\dfrac{-2018-2}{5}=-404.\)

31 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

 

31 tháng 12 2021

mik nhập nhầm bài nha bạn
 Làm lại đi bạn