Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)
\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)
viết lại biểu thức
a) \(ĐKXĐ:x\ne\pm2\)
b)
\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right).\dfrac{x+2}{2}\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right].\dfrac{x+2}{2}\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right].\dfrac{x+2}{2}\\ =\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{2}\\ =\dfrac{-6}{\left(x-2\right)\left(x +2\right)}.\dfrac{x+2}{2}\\ =\dfrac{-3}{x-2}\)
c) Khi \(A=1\) ta có
\(1=\dfrac{-3}{x-2}\\ \Leftrightarrow x-2=\left(-3\right).1\\ \Leftrightarrow x-2=-3\\ \Leftrightarrow x=-3+2\\ \Leftrightarrow x=-1\)
Vậy \(A=1\Leftrightarrow x=-1\)
ta có
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right).\frac{x+2}{2}\)
điều kiện xác định \(\hept{\begin{cases}x^2-4\ne0\\2-x\ne0\\x+2\ne0\end{cases}\Leftrightarrow x\ne\pm2}\)
b.\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right).\frac{x+2}{2}=\left(\frac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\frac{x+2}{2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=-\frac{3}{x-2}\)
c. khi \(x=1\Rightarrow A=-\frac{3}{x-2}=-\frac{3}{1-2}=3\)
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
a) x2 - 4 ≠ 0 ⇔ (x + 2)(x - 2) ≠ 0
ĐKXĐ: x ≠ - 2 và x ≠ 2