Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là p/số
\(\Rightarrow n+3\ne0\)
\(\Rightarrow n\ne-3\)
b) Để\(A\inℤ\)
\(\Rightarrow n-3⋮n+3\)
\(\Leftrightarrow n-3=n+3-6\)
\(\Rightarrow6⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
Vì :\(n\inℕ\)
\(\Rightarrow n\in\left\{0;3\right\}\)
c)\(\frac{n-3}{n+3}=\frac{n+3-6}{n+3}=1-\frac{6}{n+3}\)
Để A tối giản
\(\LeftrightarrowƯCLN\left(n-3;n+3\right)=1\)
\(\LeftrightarrowƯCLN\left(-6;n-3\right)=1\)
\(\Rightarrow n-3⋮̸\)\(-6\)
\(\Rightarrow n-3\ne6k\)
\(\Rightarrow n\ne6k+3\)
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
gọi UCLN(2n+1,3n+1)=d
=>6n+2 chia hết cho d
6n+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1/3n+1 tối giản
a) Để A là một phân số
=> 2n-4 khác 0
=>2n khác 4
=> n khác 2
Vậy n khác 2 và n thuộc n thì A là một phân số .
b) Để A là số nguyên
=>2n+2 chia hết cho 2n-4
=>2n-4+6 chia hết cho 2n-4
Vì 2n-4 chia hết cho 2n-4
=> 6 chia hết cho 2n-4
=> 2n-4 thuộc Ư(6)
=> 2n-4 thuộc tập hợp 1;2;3;6;-1;-2;-3;-6
=>2n thuộc tập hợp 5;6;7;10;3;2;1;-2
=> n thuộc tập hợp 5/2;3;7/2;5;3/2;1;-1
Vì n thuộc N => n thuộc tập hợp 3;5;1
Sau đó bạn thử lại với từng trường hợp của n rồi kết luận là n thuộc tập hợp 3;5;1
Bạn bạn ơi hãy tk cho mik nha ! Mik đang âm điểm nek .
CHÚC CÁC BẠN HỌC THẬT TỐT ^.^
#)Giải :
\(A=\frac{2n+1}{2n-4}=\frac{2n-4+5}{2n-4}=\frac{2n-4}{2n-4}+\frac{5}{2n-4}=1+\frac{5}{2n-4}\)
Để A là phân số tối giản => 5 không chia hết cho 2n - 4
Lập bảng ra xét rồi chọn những số thỏa mãn
\(\text{Ta có :}\)
\(\frac{2n+1}{2n-4}=\frac{2n-4+5}{2n-4}\)
\(=1+\frac{5}{2n-4}\)
\(\text{Để biểu thức không là phân số thì 5 không chia hết cho 2n - 4.}\)
\(=>\text{2n - 4 không thuộc Ư(5)}\)
\(=>\text{2n - 4 không bằng }-1,-5,1,5\)
\(=>\text{n không bằng }\frac{3}{2},\frac{-1}{2},\frac{5}{2},\frac{9}{2}.\)
\(\text{Vậy ...}\)