K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a, ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\)

=> \(x\ne\pm2\)

Ta có : \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

=> \(A=\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

=> \(A=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

=> \(A=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+1\right)^2}{x^2-4}\)

b, Ta có : \(A=\frac{\left(x+1\right)^2}{x^2-4}\)

Ta thấy : \(\left(x+1\right)^2\ge0\)

- Để phân thức có giá trị âm thì : \(x^2-4< 0\)

<=> \(x^2< 4\)

<=> \(-2< x< 2\)

Vậy với mọi x thỏa mãn điều kiện trên thì phân thức luôn âm .

29 tháng 12 2019

\(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(\forall x\in\left[-2;2\right]\) thì \(\left(x-2\right)\left(x+2\right)< 0\Rightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}< 0\Rightarrow A< 0\)

2 tháng 2 2020

\(a,Đkxđ:x\ne\pm2\)

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-4}\)

b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)

Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)

\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)

Vậy ............

19 tháng 12 2021

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(-2< x< 2\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2>0\end{matrix}\right.\Leftrightarrow\left(x-2\right)\left(x+2\right)< 0;x\ne-1\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow A< 0\)

19 tháng 12 2021

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{x^2-4}\)

1 tháng 1 2021

a)  \(A= \dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4} \\ =\dfrac{1}{x-2}+\dfrac{1}{x-2}+\dfrac{x^2+1}{(x-2)(x+2)} \\= \dfrac{x+2+x-2+x^2+1}{(x-2)(x+2)} \\=\dfrac{x^2+2x+1}{x^2-4} \\ =\dfrac{(x+1)^2}{(x-2)(x+2)}\)

b) Với mọi \(x\) thỏa mãn \(-2<x<2\) và \(x \ne -1\) thì \(x-2\) đều có giá trị âm, mà \(\begin{cases}(x+1)^2≥0\\x+2>0\\\end{cases}\) \( \Rightarrow\) Biểu thức A luôn có giá trị âm.

21 tháng 1 2023

\(a,A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\left(dkxd:x\ne\pm2\right)\)

\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)^2}{x^2-4}\)

Vậy \(A=\dfrac{\left(x+1\right)^2}{x^2-4}\)

\(b,\) Theo đề, ta có : \(-2< x< 2\) 

\(\Rightarrow x-2< 0;x+2>0;\left(x+1\right)^2>0\)

\(\Rightarrow A< 0\) hay phân thức luôn có giá trị âm

 

11 tháng 8 2016

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2+x-2+x^2+1}{x^2-4}=\)

=(x^2+2x+1)/(x-2)(x+2)=(x+1)^2/(x-2)(x+2)

Vì x>-2 và x<2 nên (x-2)<0, x+2>0, \(\left(x+1\right)^2>0\). Suy ra A<0