K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

a: \(A=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\)

8 tháng 12 2021

a) A =  \(\dfrac{1}{x-1}-\dfrac{4}{x+1}+\dfrac{8x}{\left(x-1\right)\left(x+1\right)}\) 

\(\dfrac{x+1-4x+4+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{5}{x-1}\) => đpcm

b) \(\left|x-2\right|=3=>\left[{}\begin{matrix}x-2=3< =>x=5\left(C\right)\\x-2=-3< =>x=-1\left(L\right)\end{matrix}\right.\)

Thay x = 5 vào A, ta có:

A = \(\dfrac{5}{5-1}=\dfrac{5}{4}\)

c) Để A nguyên <=> \(5⋮x-1\)

x-1-5-115
x-4(C)0(C)2(C)6(C)

 

a: Ta có: |x+4|=1

=>x+4=1 hoặc x+4=-1

=>x=-3(loại) hoặc x=-5

Khi x=-5 thì \(A=\dfrac{\left(-5\right)^2-5}{3\left(-5+3\right)}=\dfrac{20}{3\cdot\left(-2\right)}=\dfrac{-10}{3}\)

b: \(B=\dfrac{x-1+x+1-3+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x+1}\)

c) Để P=3 thì \(\dfrac{x+1}{2x}=3\)

\(\Leftrightarrow x+1=6x\)

\(\Leftrightarrow x-6x=-1\)

\(\Leftrightarrow-5x=-1\)

hay \(x=\dfrac{1}{5}\)(thỏa ĐK)

Vậy: Để P=3 thì \(x=\dfrac{1}{5}\)

a) Ta có: \(A=\dfrac{1}{x^2+x}+\dfrac{1}{x+1}\)

\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}\)

\(=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)

a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)

b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)

c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)

\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)

P<=2

=>x+1>0

=>x>-1

21 tháng 6 2021

 \(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

ĐKXĐ: \(x\ne1\)

\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)

\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)

\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)

\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)

 

 

 

18 tháng 6 2021

a) đk: x khác 0;1

 \(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left[\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b) Để \(\left|2x-5\right|=3\)

<=>  \(\left[{}\begin{matrix}2x-5=3< =>2x=8< =>x=4\left(c\right)\\2x-5=-3< =>2x=2< =>x=1\left(l\right)\end{matrix}\right.\)

Thay x = 4 vào A, ta có: 

\(A=\dfrac{4^2}{4-1}=\dfrac{16}{3}\)

c) Để A = 4

<=> \(\dfrac{x^2}{x-1}=4\)

<=> \(\dfrac{x^2}{x-1}-4=0< =>\dfrac{x^2-4x+4}{x-1}=0\)

<=> \(\left(x-2\right)^2=0\)

<=> x = 2 (T/m)

d) Để A < 2

<=> \(\dfrac{x^2}{x-1}< 2< =>\dfrac{x^2}{x-1}-2< 0< =>\dfrac{x^2-2x+2}{x-1}< 0\)

<=> \(\dfrac{\left(x-1\right)^2+1}{x-1}< 0\)

Mà \(\left(x-1\right)^2+1>0\)

<=> x - 1 < 0 <=> x < 1

KHĐK: x < 1 ( x khác 0)

 

18 tháng 6 2021

e) Để A thuộc Z

<=> \(\dfrac{x^2}{x-1}\in Z\)

<=> \(x^2⋮x-1\)

<=> \(x^2-x\left(x-1\right)-\left(x-1\right)⋮x-1\) 

<=> \(1⋮x-1\)

Ta có bảng: 

x-11-1
x20
 T/m

T/m

KL: Để A thuộc Z <=> \(x\in\left\{2;0\right\}\) 

f) Để A thuộc N <=> \(x\in\left\{2;0\right\}\)