Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
\(a,ĐK:x\ne3;x\ge1\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\\ b,A=4\left(2-\sqrt{3}\right)\\ \Leftrightarrow\sqrt{x-1}+\sqrt{2}=8-4\sqrt{3}\\ \Leftrightarrow\sqrt{x-1}=8-4\sqrt{3}-\sqrt{2}\\ \Leftrightarrow x-1=\left(8-4\sqrt{3}-\sqrt{2}\right)^2\\ \Leftrightarrow x=\left(8-4\sqrt{3}-\sqrt{2}\right)^2+1=...\\ d,A=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Lời giải:
ĐKXĐ: $x>0; x\neq 4$
Sửa lại đề 1 chút.
\(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2+\sqrt{x}+2}{(\sqrt{x}+2)(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\frac{2}{\sqrt{x}+2}\)
\(B=\frac{7}{3}A=\frac{14}{3(\sqrt{x}+2)}\)
Với mọi $x>0$ thì hiển nhiên $B>0$. Mặt khác, $\sqrt{x}+2\geq 2$ nên $B=\frac{14}{3(\sqrt{x}+2)}\leq \frac{14}{6}=\frac{7}{3}$
Vậy $0< B\leq \frac{7}{3}$. $B$ đạt giá trị nguyên thì $B=1;2$
$B=1\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}=1$
$\Leftrightarrow x=\frac{64}{9}$ (thỏa mãn)
$B=2\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}=2$
$\Leftrightarrow x=\frac{1}{9}$ (thỏa mãn)
\(A=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x}{\sqrt{x}+2}\right)\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{x}{\sqrt{x}+2}\right)\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}+2\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(A\ge\dfrac{1}{3\sqrt{x}}\Leftrightarrow\dfrac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}\ge\dfrac{1}{3\sqrt{x}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}+2}\ge\dfrac{1}{3}\Leftrightarrow\sqrt{x}+2\le3\)
\(\Rightarrow x\le1\)
Kết hợp ĐKXĐ \(\Rightarrow0< x\le1\)
a: Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b: Để \(A\ge0\) thì \(\sqrt{x}-3>0\)
hay x>9
\(A=\sqrt{x}+\dfrac{2}{\sqrt{x}}\ge2\cdot\sqrt{\sqrt{x}\cdot\dfrac{2}{\sqrt{x}}}=2\sqrt{2}\)
Dấu '=' xảy ra khi \(\sqrt{x}\cdot\sqrt{x}=2\)
hay \(x=2\)
a) A= \(\dfrac{\sqrt{x}}{\sqrt{x-2}}-\dfrac{4}{x-2\sqrt{x}}=\dfrac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\sqrt{x}}=\dfrac{x+2\sqrt{x}}{x}\)
b) Ta có x >0 nên \(\sqrt{x}\) >0
<=> \(2\sqrt{x}\) > 0
<=> \(x+2\sqrt{x}\) > x
<=> \(\dfrac{x+2\sqrt{x}}{x}\) > \(\dfrac{x}{x}\)
hay A > 1
c)
Đề sai rồi bạn