Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/để A là phân số =. n-1 khác 0
=>n khác 1
vậy với n khác 1 thì A là phân số
b/ để A nguyên => 5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1,-5,1,5}
nếu n-1=1=>n=2
nếu n-1=-1=>n=0
nếu n-1=-5=>n=-4
nếu n-1=5=>n=6
vậy với n={2,0,-4,6} thì A nguyên
a/để A là phân số =. n-1 khác 0
=>n khác 1
vậy với n khác 1 thì A là phân số
b/ để A nguyên => 5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1,-5,1,5}
nếu n-1=1=>n=2
nếu n-1=-1=>n=0
nếu n-1=-5=>n=-4
nếu n-1=5=>n=6
vậy với n={2,0,-4,6} thì A nguyên
nhầm đôi chỗ
a)n≠1
b Để A là số nguyên thì 5 phải chia hết cho n - 1 => n - 1∈ Ư(5)
Ư(5)= {1;-1;5;-5}
Nếu n-1=1 => n=2 n-1= -1 => n= 0
n-1= 5 => n= 6 n-1= -5 => n= -4
đúng mình nha
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
a, Biểu thức A có \(5\inℤ,n\inℤ\). Để A là phân số thì ta có điều kiện là :\(n-1\ne0\Rightarrow n\ne-1\)
\(A=\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
Để A là số nguyên \(\Leftrightarrow n-1\in\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow n-n+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : ....
c, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}< 1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}< \frac{50}{50}=1\)
\((đpcm)\)
Ta có công thức \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)(bạn tự lên mạng coi cách chứng minh nha)
Áp dụng vào bài suy ra \(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng theo vế ta được \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)(đpcm)
để A=5/n-1 là phân số thì n#1
để A=5/n-1 là số nguyên thì 5 chia hết cho n-1
suy ra n-1 thuộc Ư(5)={1;-1;5;-5}
lập bảng ta có n={2;0;6;-4}
ta có ước của hai số nguyên liên tiếp bằng 1
suy ra Ư(n: n-1)=1 vậy n/n-1 là phân số tối giản
ta có 1/1x2+1/2x3+1/3x4+....+1/49/50
=1/1-1/2+1/2-1/3+1/4-1/5 +......+1/49-1/50
=1-1/50
=49/50<1
vậy 1/1x2+1/2x3+1/3x4+.....+1/49x50<1
tụi bay là ai