K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

\(A=4x-\sqrt{4x^2-12x+9}\)

\(=4x-\sqrt{\left(2x-3\right)^2}\)

\(=4x-\left|2x-3\right|\)

Theo đề ta có: \(A=-15\Leftrightarrow4x-\left|2x-3\right|=-15\)

\(\Rightarrow\left|2x-3\right|=4x+15\)

\(\Rightarrow\orbr{\begin{cases}2x-3=4x+15\\2x-3=-4x-15\end{cases}\Rightarrow\orbr{\begin{cases}2x=-18\\6x=-12\end{cases}\Rightarrow}\orbr{\begin{cases}x=-9\\x=-2\end{cases}}}\)

                                                           Vậy x = {-2;-9}

4 tháng 9 2016

\(A=4x-\sqrt{4x^2-12x+9}\)

\(=4x-2x+3\)

\(=2x+3\)

\(A=15\Rightarrow2x+3=15\)

\(2x=12\)

\(x=6\)

21 tháng 9 2021

a) \(\sqrt{4a^2}=2\left|a\right|=-2a\) ( do a<0)

b) \(\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=\left|2x-3\right|=3-2x\)(do \(x< \dfrac{3}{2}\Leftrightarrow2x-3< 0\))

10 tháng 6 2021

`đk:x-\sqrt{x^2-4x+4}>=0`

`<=>x>=\sqrt{x^2-4x+4}`

`<=>x^2>=x^2-4x+4(x>=0)`

`<=>4x-4>=0`

`<=>4x>=4<=>x>=1`

`b)A=sqrt{x-sqrt{(x-2)^2}}`

`=sqrt{x-|x-2|}`

`x>=2=>|x-2|=x-2`

`=>A=sqrt{x-x+2}=sqrt2`

`1<=x<=2=>|x-2|=2x-`

`=>A=\sqrt{x+x-2}=sqrt{2x-2}`

16 tháng 6 2023

\(a,DKXD:x\ge0\)

\(b,A=\sqrt{x-\sqrt{x^2-4x+4}}\)

\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)

\(=\sqrt{x-\left|x-2\right|}\)

\(=\sqrt{x-\left(x-2\right)}\)

\(=\sqrt{x-x+2}\)

\(=\sqrt{2}\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

a.

\(A=\frac{(x\sqrt{x}-4x)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-4\neq 0\\ \sqrt{x}-2\neq 0\\ \sqrt{x}-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 16\\ x\neq 4\\ x\neq 1\end{matrix}\right.\)

\(A=\frac{x(\sqrt{x}-4)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{2}-2)(\sqrt{x}-1)}=\frac{(x-1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)

b.

Với $x$ nguyên, để $A\in\mathbb{Z}$ thì $\sqrt{x}+1\vdots 2(\sqrt{x}-2)}$

$\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2$
$\Leftrightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2$

$\Leftrightarrow 3\vdots \sqrt{x}-2$

$\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}$

$\Rightarrow x\in\left\{1;9;25\right\}$

Thử lại thấy đều thỏa mãn.

 

a: \(A=\dfrac{x\left(\sqrt{x}-4\right)-\left(\sqrt{x}-4\right)}{2x\sqrt{x}-8x-6x+24\sqrt{x}+4\sqrt{x}-16}\)

\(=\dfrac{\left(\sqrt{x}-4\right)\left(x-1\right)}{\left(\sqrt{x}-4\right)\left(2x-6\sqrt{x}+4\right)}=\dfrac{x-1}{2x-6\sqrt{x}+4}\)

\(=\dfrac{x-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{2\sqrt{x}-4}\)

b: Để A nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}-4\in\left\{2;-2;6\right\}\)

hay \(x\in\left\{9;1;25\right\}\)

a.

\(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\left(x\ge-1\right)\)

\(B=\sqrt{16}.\sqrt{x+1}-\sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}+\sqrt{x+1}\)

\(B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)

\(B=\left(4-3+2+1\right).\sqrt{x+1}\)

\(B=4.\sqrt{x+1}\)

b.

\(B=16\\\)

\(\Rightarrow4\sqrt{x+1}=16\)

\(\Rightarrow\sqrt{x+1}=\dfrac{16}{4}=4\)

\(\Rightarrow x+1=4^2\)

\(\Rightarrow x+1=16\rightarrow x=16-1=15\) (thỏa mãn)

vậy x=15