K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

3/3-x=0
3/3-3x/3=0
3-3x=0
-3x=-3
x=-3/-3
x=1

13 tháng 3 2022

tìm x nguyên để bth nguyên hả bạn ? 

\(3-x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

3-x1-13-3
x2406

 

a: \(\dfrac{2x-2}{3}>=\dfrac{x+3}{6}\)

=>4x-4>=x+3

=>3x>=7

=>x>=7/3

b: (x+3)^2<(x-2)^2

=>6x+9<4x-4

=>2x<-13

=>x<-13/2

c: \(\dfrac{2x-3}{3}-x< =\dfrac{2x-3}{5}\)

=>2/3x-1-x<=2/5x-3/5

=>-11/15x<2/5

=>x>-6/11

2 tháng 1 2023

\(a,đk\left(B\right):x\ne\pm3\\ B=\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{x^2-9}\\ =\dfrac{3x+9+6x+x^2-3x}{x^2-9}\\ =\dfrac{x^2+6x+9}{x^2-9}\\ =\dfrac{\left(x+3\right)^2}{x^2-9}\\ =\dfrac{x+3}{x-3}\)

\(b,P=A.B\\ =\dfrac{x+1}{x+3}\times\dfrac{x+3}{x-3}\\ =\dfrac{x+1}{x-3}\)

\(c,\) Để P nguyên 

\(\dfrac{x+1}{x-3}=1+\dfrac{4}{x-3}\)

=> \(x-3\inƯ\left(4\right)\)

\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)

\(=>x=\left\{2;4;5;1;7;-1\right\}\)

a: Khi x=5 thì A=5/(5+3)=5/8

b: \(C=A+B=\dfrac{x}{x+3}+\dfrac{2}{x-3}+\dfrac{3-5x}{x^2-9}\)

\(=\dfrac{x^2-3x+2x+6+3-5x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-6x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)

c: Để C nguyên thì x+3-6 chia hết cho x+3

=>\(x+3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(x\in\left\{-2;-4;-1;-5;0;-6;-9\right\}\)

6 tháng 5 2021

 >_ là lớn hơn hoặc bằng nha do bị lỗi chính tả
  _< là bé hơn hoặc bằng

A,
     2-5x  >_  3(2-x)
⇔ 2-5x  >_  6-3x
⇔ -5x+3x  >_  6-2
⇔ -2x  >_  3
⇔ x   _<  \(\dfrac{-3}{2}\)
Tập nghiệm { x / x  _<  \(\dfrac{-3}{2}\)}

B,
     -4x + 3  _<  5x - 7
⇔  -4x - 5x  _<  -7 - 3
⇔  -9x  _<  -10
⇔  x  >_  \(\dfrac{10}{9}\)
Tập nghiệm { x / x >_  \(\dfrac{10}{9}\) }

22 tháng 10 2021

\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)

Do đó B luôn dương với mọi x

a: Thay x=-4 vào B, ta được:

\(B=\dfrac{-4+3}{-4}=\dfrac{-1}{-4}=\dfrac{1}{4}\)

b: \(P=A\cdot B=\dfrac{x^2-3x+2x-9+3x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}\)

\(=\dfrac{x^2+2x}{\left(x-3\right)}\cdot\dfrac{1}{x}=\dfrac{x+2}{x-3}\)

c: Để P nguyên thì \(x-3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{4;2;8;-2\right\}\)

6 tháng 1 2022

cảm on tiên sinh

 

a: \(M=\dfrac{18+5x+15+3x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{8x+24}{\left(x+3\right)\left(x-3\right)}=\dfrac{8}{x-3}\)

b: Thay x=11 vào M, ta được:

\(M=\dfrac{8}{11-3}=1\)

5 tháng 1 2022

a) \(M=\dfrac{18}{x^2-9}+\dfrac{5}{x-3}+\dfrac{3}{x+3}.\left(x\ne\pm3\right).\)

\(M=\dfrac{18}{\left(x-3\right)\left(x+3\right)}+\dfrac{5}{x-3}+\dfrac{3}{x+3}=\dfrac{18+5\left(x+3\right)+3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{18+5x+15+3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{24+8x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{8\left(3+x\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{8}{x-3}.\)

b) Thay \(x=11\left(TM\right)\) vào biểu thức M: 

\(\dfrac{8}{11-3}=\dfrac{8}{8}=1.\)

21 tháng 12 2021

Answer:

a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)

\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)

\(\Rightarrow5x+2x+2-12=0\)

\(\Rightarrow7x-10=0\)

\(\Rightarrow x=\frac{10}{7}\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)

\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)

\(\Rightarrow\frac{3}{2}x=-6\)

\(\Rightarrow x=-4\)

c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)

\(\Rightarrow9x-6-6x-6\ge0\)

\(\Rightarrow3x-12\ge0\)

\(\Rightarrow x\ge4\)

d) \(\left(x+1\right)^2< \left(x-1\right)^2\)

\(\Rightarrow x^2+2x+1< x^2-2x+1\)

\(\Rightarrow4x< 0\)

\(\Rightarrow x< 0\)

e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)

\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)

\(\Rightarrow6x\le24\)

\(\Rightarrow x\le4\)

f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)

\(\Rightarrow9x-6-6x-6\le0\)

\(\Rightarrow3x\le12\)

\(\Rightarrow x\le4\)