Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4-2a^2b^2+b^4\right)-2c^2\left(a^2-b^2\right)+c^4-4c^2b^2\)
=\(\left(a^2-b^2\right)^2-2\left(a^2-b^2\right)c^2+c^4-4c^2b^2=\left(a^2-b^2-c^2\right)^2-4c^2b^2\)
=\(\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
=\(\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)
Mà a,b,c là 3 cạnh tam giác => a-b-c<0 ;a+b+c>0;a-b+c>0;a+b-c>0
=>\(...< 0\Rightarrow a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2c^2a^2\left(ĐPCM\right)\)
ta có\(a^4+b^4+c^4< 2a^2b^2+2c^2a^2+2b^2c^2\)
<=> \(-a^4-b^4-c^4+2a^2b^2+2a^2c^2+2b^2c^2>0\)
<=>\(4a^2c^2-\left(a^4+b^4+c^4-2a^2b^2+2a^2c^2-2b^2c^2\right)>0\)
<=> \(4a^2c^2-\left(a^2-b^2+c^2\right)^2>0\)
<=>.......
<=>(a+b+c)(a+c-b)(a+b-c)(b-a+c)>0
luôn đúng vì a,b,c là 3 cạnh của 1 tam giác
vậy bđt trên dc cm dễ dàng
Ta có:
\(\left(2a^2-b^2-c^2\right)^2\ge0\)
\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)
Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)
Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c\)
TA có \(a^3+b^3+c^3\ge3abc\Rightarrow-a^3-b^3-c^3\le-3abc\)
Cần chứng minh \(a^2b+b^2c+c^2a+ca^2+bc^2+ab^2-3abc\ge0\)
\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)-3abc\)
\(\ge abc+abc+abc-3abc=0\)
Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.
Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)
Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương
Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)
\(x+y=c+a+4b\); \(y+z=a+b+4c\); \(z+x=b+c+4a\)
Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)
\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)
\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)
Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)
Vậy ta có điều phải chứng minh
Đặt \(\hept{\begin{cases}-a+2b+2c=x\\2a-b+2c=y\\2a+2b-c=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên x,y,z>0
Khi đó : \(VT=\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\)
\(=\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\)
\(\ge\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\)(BĐT Cauchy cho 2 số không âm)
\(=\frac{4}{9}.3-\frac{1}{3}=\frac{4}{3}-\frac{1}{3}=1\)
\(\frac{a}{2b+2c-a}+\frac{b}{2a+2c-b}+\frac{c}{2a+2b-c}\)
\(\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2ab+2bc-b^2}+\frac{c^2}{2ac+2bc-c^2}\)
đặt pt là P
\(P\ge\frac{\left(a+b+c\right)^2}{2ab+2ac-a^2+2ab+2bc-b^2+2ac+2bc-c^2}\)
\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\)
\(a^2+b^2+c^2\ge2ab+2bc+2ca\)(BĐT tương đương)
\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\ge\frac{\left(a+b+c\right)^2}{2ab+2ac+2bc}\)
\(\left(a+b+c\right)^2\ge2ab+2ac+2bc\)(BĐT tương đương)
\(P\ge1\)
mình ko chắc đã đúng