Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\cos a=\sqrt{1-\sin ^2a}=\frac{4}{5}$
$\tan a=\frac{\sin a}{\cos a}=\frac{3}{5}: \frac{4}{5}=\frac{3}{4}$
$A=2\tan a+\cos a=2.\frac{3}{4}+\frac{4}{5}=\frac{23}{10}$
\(A=\frac{1-2sina.cosa}{sin^2a-cos^2a}=\frac{sin^2a+cos^2a-2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}\)
b/ \(A=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{\frac{1}{3}-1}{\frac{1}{3}+1}=-\frac{1}{2}\)
\(A=\sin^6\alpha+\cos^6\alpha+3.1.\sin^2\alpha.\cos^2\alpha=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3.\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1^2=1\)
\(cosa=\frac{1}{3}\Rightarrow sina=\pm\sqrt{1-cos^2a}=\pm\frac{2\sqrt{2}}{3}\)
Thay giá trị vào M và bấm máy