K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

vì a:6 dư 2=>a=6k+2

    b:6 dư 3=>b=6q+3

=>a.b=(6k+2)(6q+3)=36kq+18k+12q+6=6(6kq+3k+2q+1) chia hết cho 6

        Vậy a.b chia hết cho 6

12 tháng 9 2021

up

u

u

u

u

u

 

 

uuupppppppppppp

Bài 2: 

a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-n^2+12n-35\)

\(=12n-36⋮12\)

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

19 tháng 1 2019

Chọn D

28 tháng 8 2016

Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.

Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.

4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.

Bạn xem lại đề.

20 tháng 9 2016

Sai đề rồi

16 tháng 2 2015

bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)

16 tháng 2 2015

Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4

b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13

Câu b) tương tự nhé bạn.

16 tháng 6 2018

Vì a : 5 dư 2

    b: 5 dư 3

\(\Rightarrow\) a; b lần lượt có dạng 5k+2; 5k+3

\(\Rightarrow\)ab=(5k+2).(5k+3)

           =5k(5k+3)+2(5k+3)

          =25k2+15k+10k+6

          =25k2+25k+5+1

          =5.(5k2+5k+1)+1

Ta có : \(5⋮5\)\(\Rightarrow5.\left(5k^2+5k+1\right)⋮5\)

Mà 1:5 =0 dư 1

\(\Rightarrow5.\left(5k^2+5k+1\right)+1:5 \left(d\text{ư}1\right)\)

\(\Rightarrow ab:5 \left(d\text{ư}1\right)\)

                    Điều phải chứng minh

16 tháng 6 2018

Đặt a = 5k + 2. b = 5x + 3 ( do a chia 5 dư 2, b chia 5 dư 3 )

=> ab = (5k+2)(5x+3) = 25kx+10x+15k + 6

Ta có 25kx chia hết cho 5, 10x chia hết cho 5, 15k chia hết cho 5, 6 chia 5 dư 1 => ab chia 5 dư 1

Chúc bạn học tốt ^_^

2 tháng 10 2019

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

2 tháng 10 2019

cảm ơn bạn lê tài bảo châu nhé