Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2016\sqrt{\left(x+1\right)^2}+2015\sqrt{\left(x-1\right)^2}\)
\(=2016\left|x+1\right|+2015\left|x-1\right|\) (1)
Ta thấy: \(\begin{cases}2016\left|x+1\right|\ge0\\2015\left|x-1\right|\ge0\end{cases}\)
\(\Rightarrow\left(1\right)\ge0\).Mà \(2016\left|x+1\right|+2015\left|x-1\right|\le0\)
\(\Rightarrow\begin{cases}2016\left|x+1\right|=0\\2015\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x+1\right|=0\\\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)
Vô nghiệm (vì x ko nhận 2 giá trị khác nhau cùng lúc)
Vì \(\sqrt{\left(x+1\right)^2}\ge0;\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}\ge0;2015.\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\ge0\)
Mà theo đề bài: \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}=0\)
=> \(\begin{cases}2016.\sqrt{\left(x+1\right)^2}=0\\2015.\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}\sqrt{\left(x+1\right)^2}=0\\\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}x+1=0\\x-1=0\end{cases}\) => \(\begin{cases}x=-1\\x=1\end{cases}\)
, vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\left|2020-x\right|\)
\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)
\(A_{min}=1\) khi \(2020\le x\le2021\)
Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)
Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)
\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
Thay x=2 và y=-1 vào biểu thức P ta có:
\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)
Vậy ................
- Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn