K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

\(\Rightarrow\sqrt{x}-1=1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

hoặc \(\sqrt{x}-1=-1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

hoặc \(\sqrt{x}-1=2\Rightarrow\sqrt{x}=3\Rightarrow x=9\)

hoặc \(\sqrt{x}-1=-2\Rightarrow\sqrt{x}=-1\left(VN\right)\)

Vậy x = 4;x = 0;x = 9

3 tháng 11 2016

Ta có: B = \(\frac{\sqrt{x}-5}{\sqrt{x}+1}\) = \(\frac{\sqrt{x}+1-1-5}{\sqrt{x}+1}\) = \(\frac{\sqrt{x}+1-6}{\sqrt{x}+1}\) = \(\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{-6}{\sqrt{x}+1}\) = 1 + \(\frac{-6}{\sqrt{x}+1}\)

\(\Rightarrow\) Để B \(\in\) Z thì -6 \(⋮\) \(\sqrt{x}+1\) \(\Rightarrow\sqrt{x}+1\inƯ\left(-6\right)\)

Mà Ư(-6) = {-6; -1; 1; 6}

* \(\sqrt{x}+1\) = -6

\(\Rightarrow\) \(\sqrt{x}\) = -7

\(\Rightarrow\) x = 49

* \(\sqrt{x}+1\) = -1

\(\Rightarrow\sqrt{x}\) = -2

\(\Rightarrow\) x = 4

* \(\sqrt{x}+1\) = 1

\(\Rightarrow\) \(\sqrt{x}\) = 0

\(\Rightarrow\) x = 0

* \(\sqrt{x}+1\) = 6

\(\Rightarrow\sqrt{x}\) = 5

\(\Rightarrow\) x = 25

Vậy để B = \(\frac{\sqrt{x}-5}{\sqrt{x}+1}\) \(\in\) Z thì x = {0; 4; 25; 49}

3 tháng 11 2016

để B thuộc Z => \(\frac{\sqrt{x}-5}{\sqrt{x}+1}\) là số nguyên

=> \(\sqrt{x}-5⋮\sqrt{x}+1\)

=> \(\sqrt{x}-5-\left(\sqrt{x}+1\right)⋮\sqrt{x}+1\\ \Rightarrow-6⋮\sqrt{x}+1\)

=> \(\sqrt{x}+1\inƯ_{\left(-6\right)}=\left\{1;-1;6;-6\right\}\)

ta có bảng sau:

\(\sqrt{x}+1\)1-16-6
\(\sqrt{x}\)0-25-7
x0 loại25

loại

vậy x = { 0; 25 }

14 tháng 10 2018

a) Gọi biểu thức trên là A.

 \(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)

Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:

\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.

Vậy có 1 nghiệm là x = 0

b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)

\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)

Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!

c) Tương tự như trên,bạn tự làm

d) Tương tự như câu a),bạn tự làm. Mình lười òi =))

2 tháng 7 2019

a)\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

 \(A=-1\Leftrightarrow1-\frac{8}{\sqrt{x}+3}=-1\)

\(\Leftrightarrow\frac{8}{\sqrt{x}+3}=2\)

\(\Leftrightarrow\sqrt{x}+3=4\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy A = -1 \(\Leftrightarrow x=1\)

2 tháng 7 2019

b) \(A=1-\frac{8}{\sqrt{x}+3}\)

\(A\inℤ\Leftrightarrow\frac{8}{\sqrt{x}+3}\inℤ\)hay \(8⋮\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm3;\pm4\right\}\)

Mà \(\sqrt{x}+3\ge3\)nên\(\Leftrightarrow\left(\sqrt{x}+3\right)\in\left\{3;4\right\}\)

\(TH1:\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(TH2:\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

Vậy \(x\in\left\{0;1\right\}\)thì A nguyên

20 tháng 1 2019

ĐK: \(x\ge-1;x\ne3\)

\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)

Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0

Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.

Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)

Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)

Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)

Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.

13 tháng 11 2017

Ta có :

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

để A nguyên thì \(\frac{4}{\sqrt{x}-3}\)nguyên

\(\Rightarrow\)\(⋮\)\(\sqrt{x}-3\)

\(\Rightarrow\)\(\sqrt{x}-3\)\(\in\)Ư ( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }

Lập bảng ta có :

\(\sqrt{x}-3\)1-12-24-7
\(\sqrt{x}\)42517-4
x16425149\(\varnothing\)

Vậy ...