Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:). Em phá ngoặc rồi nhóm các hạng tử có cùng phần biến lại vs nhau:)
-(x-y+z)+(x-y+z)=-x+y-z+x-y+z=(-x+x)+(y-y)+(-z+z)=0+0+0=0
Ta có \(M^2=y\left(x-z\right)-z\left(x-y\right)\)
\(=xy-yz-xz+yz\)
\(=xy-xz\)
\(=x\left(y-z\right)=-20\left(-5\right)=100\)
\(M^2=100\Rightarrow\orbr{\begin{cases}M=10\\M=-10\end{cases}}\)
Ta có: \(x+y+z=18\)
\(\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}\)
\(\Rightarrow\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}and=\dfrac{\left(y+z\right)+\left(2+3\right)}{5}+\dfrac{\left(x+1\right)}{3}\)
\(\Leftrightarrow\dfrac{5+\left(y+z\right)}{5}+\dfrac{1+x}{3}\)
\(and\dfrac{5}{5}=1\)
\(\Rightarrow x=1-\dfrac{1}{3}=\dfrac{2}{3}\) vậy \(x=2\)
Ps: tự làm tiếp nha mình mới làm tới đó
N = ( x - y )( x - 2y )( x - 3y )( x - 4y ) + y4
= [ ( x - y )( x - 4y ) ][ ( x - 2y )( x - 3y ) ] + y4
= ( x2 - 5xy + 4y2 )( x2 - 5xy + 6y2 ) + y4
Đặt t = x2 - 5xy + 5y2
N = ( t - y2 )( t + y2 ) + y4
= t2 - y4 + y4
= t2 = ( x2 - 5xy + 5y2 )2
Vì x, y thuộc Z => x2 thuộc Z ; -5xy thuộc Z ; 5y2 thuộc Z
=> ( x2 - 5xy + 5y2 )2 là một số chính phương
=> đpcm
\(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)
\(=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)
\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)
Đặt \(x^2-5xy+5y^2=t\)
\(\Rightarrow\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\)
\(=\left(x^2-5xy+5y^2\right)^2\)
Vì \(x,y\inℤ\)\(\Rightarrow\left(x^2-5xy+5y^2\right)^2\)là số chính phương
hay \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương ( đpcm )
Ta có x - y + y - z = x - z = 18
Sau đó dùng tổng hiệu => x = 15 , z = -3
Sau đó thay vào tính y được bằng 7
=> x+y+z = 19
(x - y) + (y - z) + (x + z) = 8 + 10 + 12
(x + y) + (- y + y) + + (- z + z) = 30
2x = 30
=> x = 15
=> 15 - y = 8 => y = 7
=> 15 + z = 12 => z = - 3
=> x + y + z = 15 + 7 + ( - 3 ) = 19