K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 4 2022

Nhận xét: với mọi n nguyên thì \(n^2\equiv\left\{0;1;2;4\right\}\left(mod7\right)\)

Giả sử a;b tồn tại 1 số không chia hết cho 7

\(\Rightarrow a^2+b^2\equiv\left\{1;2;3;4;5;6;8\right\}\left(mod7\right)\)

\(\Rightarrow a^2+b^2\) luôn ko chia hết cho 7 (trái với giả thiết)

Vậy điều giả sử là sai hay \(a;b\) đều chia hết cho 7

NV
6 tháng 4 2022

Do \(2x^2-1\) luôn lẻ \(\Rightarrow y^3\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k-1\) với \(k>1\)

\(2x^2-1=\left(2k-1\right)^3=8k^3-12k^2+6k-1\)

\(\Rightarrow x^2=4k^3-6k^2+3k=k\left(4k^2-6k+3\right)\)

- Nếu \(k⋮3\Rightarrow x^2⋮3\Rightarrow x⋮3\)

- Nếu \(k⋮̸3\), gọi \(d=ƯC\left(4k^2-6k+3;k\right)\) với \(d\ne3\)

\(\Rightarrow4k^2-6k+3-k\left(4k-6\right)⋮d\) 

\(\Rightarrow3⋮d\Rightarrow d=1\)

\(\Rightarrow4k^2-6k+3\) và \(k\) nguyên tố cùng nhau

Mà \(k\left(4k^2-6k+3\right)=x^2\Rightarrow\left\{{}\begin{matrix}k^2=m^2\\4k^2-6k+3=n^2\end{matrix}\right.\) 

Xét \(4k^2-6k+3=n^2\Rightarrow16k^2-24k+12=\left(2n\right)^2\)

\(\Rightarrow\left(4k-3\right)^2+3=\left(2n\right)^2\)

\(\Rightarrow\left(2n-4k+3\right)\left(2n+4k-3\right)=3\)

Giải pt ước số cơ bản này ta được nghiệm nguyên dương duy nhất \(k=1\) (không thỏa mãn \(k>1\))

Vậy \(x⋮3\)

6 tháng 4 2022

Em cám ơn thầy Lâm ạ!

NV
16 tháng 4 2022

\(\Rightarrow\left(n+3\right)\left(n^3+2n^2+1\right)\) cũng là SCP

\(\Rightarrow4\left(n^4+5n^3+6n^2+n+3\right)\) là SCP

\(\Rightarrow4n^4+20n^3+24n^2+4n+12=k^2\)

Ta có:

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n-1\right)^2+3n^2+14n+11>\left(2n^2+5n-1\right)^2\)

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2-\left(n-1\right)\left(5n+11\right)\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left(2n^2+5n-1\right)^2< k^2\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n\right)^2\\4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n^2-4n-12=0\\\left(n-1\right)\left(5n+11\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n=6\end{matrix}\right.\)

Thay lại kiểm tra thấy đều thỏa mãn

17 tháng 4 2022

Em cám ơn thầy Lâm nhiều lắm ạ!

 

Xét p=2\(\Rightarrow p^4+29=45=3^2.5\), có 6 ước số là SND, loại

Xét p=3\(\Rightarrow p^4+29=110=2.5.11\), có 8 ước số là SND, tm

Xét p=5\(\Rightarrow p^4+29=654=2.3.109\) , có 8 ước số là SND, tm

Xét p\(\ge6\). Do p là SNT nên p có dạng \(6k+1\) hoặc \(6k-1\) (k\(\in N\)*)

TH1: p=6k+1

Khi đó ta có \(p^4+29=\left(6k+1\right)^4+29\equiv1+29\equiv0\left(mod6\right)\)

Ta cũng có: \(p^4+29=\left(6k+1\right)^4+29\equiv0\left(mod5\right)\)

vì \(\left(6k+1\right)⋮5̸\)

\(\Rightarrow p^4+29=6.5.a=2.3.5.a\)(a là STN)\(\Rightarrow p^4+29\) có nhiều hơn 8 ước số  nguyên dương, loại.

TH2: p=6k-1. Chứng minh tương tự ta thấy không có p thoả mãn

\(\Rightarrow p\ge6\) không thoả mãn

Vậy....

NV
16 tháng 4 2022

Với \(y=1\Rightarrow\dfrac{x^2+x+1}{x+1}\in Z\Rightarrow\dfrac{1}{x+1}\in Z\Rightarrow\) ko tồn tại x nguyên dương thỏa mãn (loại)

Với \(y>1\):

Đặt \(\dfrac{x^2+x+1}{xy+1}=k\Rightarrow x^2-\left(ky-1\right)x+1-k=0\)

\(\Delta=\left(ky-1\right)^2+4\left(k-1\right)\) là số chính phương

Ta có: \(k\ge1\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)

Đồng thời \(y>1\Rightarrow y\ge2\Rightarrow2ky\ge4k>3\)

\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-2\right)^2+\left(2ky-3\right)+4\left(k-1\right)>\left(ky-2\right)^2\)

\(\Rightarrow\left(ky-2\right)^2< \left(ky-1\right)^2+4\left(k-1\right)\le\left(ky-1\right)^2\)

\(\Rightarrow\left(ky-1\right)^2+4\left(k-1\right)=\left(ky-1\right)^2\)

\(\Rightarrow k=1\Rightarrow\dfrac{x^2+x+1}{xy+1}=1\)

\(\Rightarrow x^2+x=xy\Rightarrow y=x+1\)

\(\Rightarrow y-x=1\)