Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)
Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)
có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)
Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)) \(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)
MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)
\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)
Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)
Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3
Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)
Cộng lại thì:
\(LHS\le a+b+c=3\)
Đẳng thức xảy ra tại a=b=c=1
Ta có BĐT phụ \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow-\frac{\left(a-b\right)^2\left(a+b\right)}{b\left(a+3b\right)}\le0\) *luôn đúng*
Tương tự cho 2 BĐT còn lại cũng có:
\(P\le2a-b+2b-c+2c-a=a+b+c=3\)
Dấu '=" khi \(a=b=c=1\)
Xét \(\frac{5b^3-a^3}{ab+3b^2}-\left(2b-a\right)=\frac{5a^3-a^3-\left(ab+3b^2\right)\left(2b-a\right)}{ab+3b^2}\)
\(=\frac{5b^3-a^3-\left(2ab^2-a^2b+6b^3-3b^2a\right)}{ab+3b^2}=\frac{-b^5-a^3+a^2b+b^2a}{ab+3b^2}\)
\(=\frac{-\left(a+b\right)\left(a-b\right)^2}{ab+3b^3}\le0\)
\(\Rightarrow\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
Ta có 2 BĐT tương tự \(\hept{\begin{cases}\frac{5c^3-b^3}{bc+3c^2}\le2c-b\\\frac{5a^3-c^3}{ca+3a^2}\le2a-c\end{cases}}\)
Cộng 3 vế BĐT trên ta được \(P\le2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=3\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
\(3a^2+4ab+b^2=3a^2+3ab+ab+b^2=3a\left(a+b\right)+b\left(a+b\right)=\left(3a+b\right)\left(a+b\right)\)
xong AM -GM
Áp dụng BĐT Bunhiacopxky :
\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)
\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)
\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)
Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)
\(P\le\frac{2}{3}+ab+bc+ac\)
Theo hệ quả quen thuộc của BĐT AM - GM :
\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)
Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{1}{\sqrt{3a^2+4ab+b^2}}=\dfrac{1}{\sqrt{\left(a+b\right)\left(3a+b\right)}}=\dfrac{\sqrt{2}}{\sqrt{\left(2a+2b\right)\left(3a+b\right)}}\)
\(\ge\dfrac{\sqrt{2}}{\dfrac{2a+2b+3a+b}{2}}=\dfrac{\sqrt{2}}{\dfrac{5a+3b}{2}}=\dfrac{2\sqrt{2}}{5a+3b}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{1}{\sqrt{3b^2+4bc+c^2}}\ge\dfrac{2\sqrt{2}}{5b+3c};\dfrac{1}{\sqrt{3c^2+4ca+a^2}}\ge\dfrac{2\sqrt{2}}{5c+3a}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\dfrac{2\sqrt{2}}{5a+3b}+\dfrac{2\sqrt{2}}{5b+3c}+\dfrac{2\sqrt{2}}{5c+3a}\)
\(\ge\dfrac{18\sqrt{2}}{8\left(a+b+c\right)}=\dfrac{18\sqrt{2}}{8}=\dfrac{9\sqrt{2}}{4}\)
Xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Ta có: \(5a^2+2ab+2b^2=4a^2+2ab+b^2+\left(a^2+b^2\right)\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Lại có: \(\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)
Tương tự cộng lại ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo BĐT Bunhiacopxki ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}\)
\(\Rightarrow VT\le\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\)
Dấu = xảy ra khi \(a=b=c=\sqrt{3}\)